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ABSTRACT 

Much of the research on advanced biofuels is devoted to the study of novel chemical 
pathways for converting nonfood biomass into liquid fuels that can be blended with existing 
transportation fuels. Many compounds under consideration are not found in the existing fuel 
supplies. Often, the physical properties needed to assess the viability of a potential biofuel 
are not available. The only reliable information available may be the molecular structure. 
Group contribution methods for estimating physical properties from molecular structure have 
been used for more than 60 years. The most common application is estimation of 
thermodynamic properties. More recently, group contribution methods have been developed 
for estimating rate dependent properties including cetane and octane numbers. Often, 
published group contribution methods are limited in terms of types of function groups and 
range of applicability. In this study, a new, broadly-applicable group contribution method 
based on an artificial neural network was developed to estimate cetane number research 
octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. 
The new method is more accurate over a greater range molecular weights and structural 
complexity than existing group contribution methods for estimating cetane and octane 
numbers. 

 
1.0 INTRODUCTION 

First-generation biofuels, which include ethanol and biodiesel, are derived from agricultural products such 
as starch, sugar, animal fat, and vegetable oil.1 These biofuels have been criticized because of the stress 
that their production places on food commodities. These problems have prompted interest in fuels 
produced from lignocellulosic materials, algae, crop residue, or other non-food feedstocks. Fuels 
produced from these alternative feedstocks are called second-generation biofuels or advanced biofuels.1  
 
The feedstocks for advanced biofuels are much harder to convert into liquids than starches, sugars, fats, 
and oils. Overcoming this difficulty has prompted interest in novel chemical pathways, which yield the 
products that are not found in current fuels supplies. Because they currently have no practical or 
commercial value, key physical properties may not been measured. The only thing that may be known 
with certainty is the chemical structure. 
 
Quantitative structure-property relationships have been studied extensively.2 Since Lydersen published 
his report on estimating the critical properties of organic compounds,3 group contribution methods have 
been, perhaps, the most widely used approach for correlating physical properties with molecular structure. 
Group contribution correlations have been developed for thermodynamic properties including critical 
properties,3,4 freezing and boiling points,4 liquid heat capacities,5 gas heat capacities,6,7 enthalpies of 
formation for gases,6,7 entropies of gases, 6,7 and activity coefficients.8 Group contribution methods are not 
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limited to thermodynamic properties. Orrik and Erbar published a group contribution method for 
estimating liquid viscosity.9  
 
Group contribution methods also have been used to correlate combustion properties of fuels including 
auto ignition temperature,10 delayed ignition time,11 octane number (ON),12,13 and derived cetane number 
(DCN).11,14 ,15 ,16 Structure-property relationships for ON and Cetane Number (CN) are much more 
complex than thermodynamic properties of liquids and gases because they are related to combustion 
kinetics. Smolenskii17 proposed a measure of the complexity of a property based on the variability of the 
property for subsets of isomers and total variability. Smolenskii et al.18 report that models of properties 
with low complexity have reasonable accuracy while models of properties with high complexity are 
“senseless.” Smolenskii et al. found that cetane number is a property with a moderate to high degree of 
complexity. Therefore, standard methods of correlating properties with structures are inadequate. 
 
Group contribution methods for estimating ON and CN have been moderately successful. DeFries et al.14 

developed a correlation for estimating CN using data for 99 paraffinic and aromatic hydrocarbons with 
molecular sizes ranging from C5 to C25. Their correlation has the following functional form. 

 
 
CN = fi ⋅cni

i∈groups
∑  , (1) 

where CN is the CN, fi is the fraction of group i that comprises the molecule, and cni is the group 
contribution parameter for group i. This formulation of a group contribution method is well suited for 
estimating CN from carbon-13 nuclear magnetic resonance spectroscopy data. Although their study 
included a discussion of data for olefinic and naphthenic compounds, DeFries et al. did not define groups 
for ringed compounds or carbon-carbon double bonds. 
 
Albahri13 developed group contribution methods for research ON (RON) and motor ON (MON) using a 
data set consisting of 188 pure hydrocarbons, which included paraffins, naphthenes, olefins, and 
aromatics. Molecular sizes ranged from C4 to C11. Albahri used a functional form similar to other, well-
known group contribution correlations.4,5,6,7  

 
  
ON = H ni ⋅ xi

i∈groups
∑ ; P

⎛

⎝⎜
⎞

⎠⎟
  , (2) 

where ON is either RON or MON, ni is the number of group i in the molecules, xi is the group 
contribution parameter for i, and H is function of the summation of the functional groups and  P, which is 
a vector of model parameters. 
 
Dahmen and Marquardt11 took a different approach when developing a group contribution method for 
estimating CN. Instead of correlating CN with structure, they developed a group contribution method for 
estimating ignition delay; and then they used to formulas in ASTM D689019 to determined DCN. Dahmen 
and Marquard’s data set consisted of 154 compounds that included hydrocarbons, alcohols, esters, and 
other oxygenated compounds. The correlation includes more complex nonlinearities and interactions than 
DeFries et al. and Albahri’s methods 

 
  
τ = A ⋅ psat

m ⋅exp gi ni( ) ⋅ xi
i∈groups
∑⎛

⎝⎜
⎞

⎠⎟
 , (3) 

where A is an empirical constant, psat is the vapor pressure at 298 K, m is an empirical constant, ni is the 
number of group i in the molecules, gi is a function characteristic of group i, xi is the group contribution 
parameter for i. Vapor pressure is determined from Joback’s group contribution correlations for critical 
properties and boiling point.4 
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Published group contribution methods and other structure-property correlations for CN and ONs are 
reported to be very accurate. Correlation coefficients (r2) for hydrocarbons are reported to be 0.97 to 
greater than 0.99. Correlation coefficients for oxygenated compounds are lower, but significant. One 
study20 reported correlation coefficients for alcohols and esters to be 0.90. However, when the published 
correlations were tested against a more extensive data set, the resulting errors were much greater than 
reported in the original papers. The published group contribution methods for CN and ON gave good 
results when applied to fuels with molecular sizes and complexities similar to those in the data sets used 
to develop the model, but the predictions were poor when these models were extrapolated.  
 
One of the problems with existing group contribution methods for estimating CN and ONs is that they do 
not account for complex, nonlinear interactions between functional groups. Figure 1 is a plot of CNs for 
n-alkanes and primary alcohols of n-alkanes. If existing group contribution methods are correct, then the 
CN data for primary alcohols should form a curve having approximately the same shape as the curve for 
n-alkanes. However, Fig. (1) shows that data for primary alcohols follow a qualitatively different curve 
than n-alkanes indicating that a level of complexity that cannot be captured by standard group 
contribution methods. 
 
The goal of this study was to develop a reliable correlation for estimating cetane and octane numbers of 
hydrocarbons and oxygenated hydrocarbons from chemical structure. While such a correlation will not 
replace the need for actual measurements, it would be a very useful screening tool for evaluating 
candidate biofuels early in the research and development process. When CN and ON estimates are 
combined with blending models21,22 the results could be used to evaluate whether a proposed biofuel can 
be blended with current fuels.  CN and ON are indicative of the quality of the fuel; and hence, its 
economic value. 
 
The specific objective of this study is to develop a group contribution method for estimating CN, RON, 
and MON that 
 

• is applicable to a wide range of hydrocarbons and oxygenated hydrocarbons typical of advanced 
biofuels, 

 

• accounts for nonlinear 
interactions among the 
functional groups that make 
up the fuel, and 

 

• can be extrapolated with a 
reasonable degree of 
confidence. 

 

To accomplish these objectives, a 
group contribution method was 
developed using an artificial neural 
network (ANN). ANN-based group 
contribution methods have been 
developed for estimating densities,23 
auto-ignition temperature,10 and 
octane number.13 These studies 
indicate that an ANN can account 
for nonlinear interactions among 
function groups. 
 

 
 

Fig. 1. CN data for n-alkanes and primary alcohols of 
n-alkanes as a function of carbon number. 
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2.0 DATA SET 

2.1. Description of Data Set 

Developing a reliable group contribution method for estimating CN and ON of hydrocarbons and 
oxygenated hydrocarbons requires comprehensive data set that includes compounds with a broad range of 
molecular weights and molecular complexity. The data set used in this study was assembled from a 
variety of sources including published data compilations, data set used to develop other structure-property 
relationships, and primary sources. CN and DCN we found to be nearly equivalent, so the CN data 
included both CN and DCN measurements. Appendix A contains additional discussion of CN versus 
DCN. Blend CN and ONs were not included in the data set. Table 1 is a summary of the references used 
in this study and the types of data obtained from those references. Table 2 lists the number of each class 
of compound in the data set with the corresponding range of carbon numbers. 
 
The data obtained from the references listed in Table 1 were not always consistent. Reported values of 
CN differed by more than 50. The spread in RON and MON measurements can be as a great as 40. The 
variability could be the result of differences in test procedures, impurities in the test material, and 
experimental errors. The reference listed in Table 1 includes 85 compounds with duplicate CN 
measurements, 57 compounds with duplicate RON measurements, and 36 compounds with duplicate 
MON measurements. The initial compilation included all measured values. No judgment was made 
concerning the accuracy of the data.  
 
 

Table 1. Data set references. 
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Yanowitz et al.24  X   X X X X X X X X X X 
Creton at al.16 X   X X  X X      
Salanda et al.25  X   X X  X X X X X X X 
Smolenskii et al.18 X   X   X       
Dahmen and Marquardt11 X   X X  X X X X X  X 
Kamei and Singal26 X         X    
Nagdeote and Deshmukh27 X        X X    

Naegeli et al.28 X         X   X 
Freedman and Bagby29 X        X    X 
Knothe et al.30 X            X 
API 31  X X X X X X X      
da Silva and Bozzelli32  X      X      
Masum et al.33  X       X     
Hamadi34  X X     X X  X   
Egloff and Van Arsdell35  X X X X X X X X  X   
Yanowitz et al.36  X X      X X   X 
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Table 2. Summary of compounds included in the data set. 
 

Compound Type 
Cetane Number Octane Number 

Number of 
Compounds 

Carbon 
Number Range 

Number of 
Compounds 

Carbon 
Number Range 

Paraffins 77 C3 –  C24 45 C2 –  C12 

Olefins and Alkynes 39 C5 –  C24 68 C2 –  C11 

Naphthenes 47 C5 –  C26 43 C5 –  C11 

Aromatics 65 C6 –  C26 37 C6 –  C10 

Alcohols 28 C1 –  C18 13 C1 –  C6 

Esters and Triglycerides 130 C5 –  C57 3 C6 –  C9 

Other Oxygenates 63 C
2
 – C

18
 9 C2 –  C6 

Total 449 C1 –  C57 218 C1 –  C12 
 
 
Picking “best” values of CN, RON, and MON measurements for each compound can bias the correlation, 
and it results in under estimating the uncertainty. Averaging multiple measurements to obtain a single 
value also results in under estimation ofuncertainty. Using all measurements to develop the correlation 
also can result in bias. For a few compounds, a large number of a large number of duplicate 
measurements have been reported.  For example, the references in Table 1 include 11 duplicate CN 
measurements for n-decane. Including all of these measurements in the data set would give more weight 
to n-decane than other compounds, which could bias the correlation. To avoid giving excess weight to a 
few compounds that have been studied extensively while retaining information on variability and 
uncertainty, the number of measurement included in the final data set for a given compound was limited 
to three – the “best estimate,” the minimum, and the maximum.  
 
In operations research, the probability distribution for activity durations is commonly estimated from 
three points – a “pessimistic,” an “optimistic,” and a “most likely” value.37 Restricting the number of 
measurements for a given compound to three resembles this practice. Based on the data summarized in 
Ref. 24, a reasonable three-point estimate of the distribution of CN data can be obtained using the 
Swanson-Megil approximation.37 This ability to approximate the observed distribution of measurements 
from the minimum, maximum, and best estimate values indicates that limiting the number of 
measurements for a given compound resembles data compression rather than data censoring. 
 
A limited amount of data censoring was used when compiling the data set. Obvious outliers were 
eliminated. For example, dimethyl ether is reported to be a poor substitute for gasoline. Therefore, a 
reported RON of 170 for dimethyl ether is clearly incorrect. Values reported as inequalities also were 
eliminated. In some cases data compilations include compounds, but give ambiguous structural 
information.  For example, specifying a compound as dimethylcyclohexane fails to indicate the relative 
positions of the methyl groups on the cyclohexane ring. Compounds specified with an ambiguous 
structure were eliminated from the data set if there was insufficient information to determine the group 
composition of that compounds. Table 3 lists the number of measurements included in the final data set. 
 
Appendix B contains a complete tabulation of the data used in this study. 
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Table 3. Summary of amount of data included in the final data set. 
 

Compound Class 

Number of Measurements 

Cetane 
Number 

Research 
Octane 

Number 

Motor Octane 
Number 

Paraffins 115 66 63 

Olefins and Alkynes 45 75 67 

Naphthenes 63 51 36 

Aromatics 83 42 40 

Alcohols 40 26 22 

Esters and Triglycerides 186 3 3 

Other Oxygenates 73 8 10 

Total 604 271 241 
 
 
2.2. Variability and Uncertainty in the Data 

As noted in the previous section, CN and ON data from different sources rarely agree. Huber and 
Hauber38 compared CN measurements obtained from different laboratory in a “round robin” test and 
found substantial differences in measured CNs. Compounds for which multiple measurements were 
available were used to estimate variability or uncertainty in the measured values of CN, RON, and MON. 
For each compound with multiple measurements, the average value of the property was valuated, and 
deviations for the average were determined. For a each property, the deviations were aggregated into a 
single set, and order statistics were used to estimate the cumulative distribution functions (CDFs) for the 
combined set of deviations. The value of the CDF for each point was estimated using the following 
equation. 

 
  
Fi =

i − 1
2

N
 , (4) 

where i is the index of the data point in the ordered set of deviations, Fi is the CDF for the ith point, and N 
is the total number of points in the ordered data set. The index i runs from 1 to N. 
 
Figures 2 and 3 are the CDF from deviations in the RON and MON measurements. The ordinate in Figs. 
2 and 3 is a normal probability scale. The CDF for a normal probability distribution is a straight line on 
these plots with a positive slope equal to the reciprocal of standard deviation. The deviation data for both 
RON and MON lie on a straight line indicating that the distributions of deviations are normal. Linear fits 
of the data for both RON and MON gave correlation coefficients (r2) of 0.99. Based on the slope of these 
lines, the standard deviation for RON is 3.4 and the standard deviation for MON is 3.3. The fact that the 
combined set of deviations can be represented by the same normal probability distribution suggests that 
the combined sets of deviations are characteristic of the uncertainty in the experimental data for RON and 
MON. 
 
Figure 4 is the CDF of CB deviations plotted on a normal probability scale. The deviations do not lie on a 
straight line indicating that the distribution of deviations is not normal. The tails of this distribution are 
dominated by high molecular-weight esters suggesting that the variability in CN measurements for 
oxygenated hydrocarbons may differ from the variability for hydrocarbons. To test this hypothesis, the set 
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of CN deviations were divided into two populations – hydrocarbons and oxygenated hydrocarbons. CDFs 
for these two populations are plotted in Fig. 5. Both CDFs are approximately linear. The correlation 
coefficient for hydrocarbons is 0.96, and the correlation coefficient for oxygenated hydrocarbons is 0.97. 
Variability in CN for hydrocarbons and oxygenated hydrocarbons can be approximated by two different 
normal probability distributions. The standard deviation for hydrocarbons is 4.1 and the standard 
deviation for oxygenated hydrocarbons is 7.5. As was the case for ONs, variability in CN is assumed to 
be characteristic of uncertainty. For reasons that are not understood, the CN data for hydrocarbons are 
more accurate than CN data for oxygenated hydrocarbons. 
 
In addition to experimental uncertainty, a large data set will most likely contain erroneous values as a 
result of gross experimental errors or transcription errors. Stating that a data set contains erroneous values 
in no way disparages the researchers who performed the original measurements or compiled  the data. 
Rather, it is recognition that the probability of human errors is not zero. Williams39 gives unreliability 
estimates for various generic tasks. A complex task requiring a high level of comprehension and skill has 

 
 

Fig. 2. CFD for deviations of RON 
measurements from the average. 

 
 

Fig. 3. CDF for deviations of MON 
measurements from the average. 

 
 
Fig. 4. CDF for combined deviations of CN 

measurements from the average.  
 

 
 
Fig. 5. DF for deviations of CN measurements 

from the average for hydrocarbons and 
oxygenated hydrocarbons. 
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a nominal human unreliability of 0.16 with a range of 0.12 to 0.28. The ASTM tests for determining ON 
and CN could be considered such a complex task. A routine, highly practiced task involving a relatively 
low level of skill has a nominal human unreliability of 0.02 with a range of 0.007 to 0.045. Transcribing 
experimental results would fit this category. Based on Williams unreliability estimates, it is reasonable to 
assume that between 2 and 16 values out of every 100 values in a compilation of experimental results are 
erroneous. 
 
2.3. Comparison with Other Data Sets 

Table 4 contains a comparison of the CN data set used in this study with the data sets used in three other 
studies of structure-property relationships for CN. Overall, the data set used in this study contains CN 
data more compounds than other published studies. Only this study and Dahmen and Marquardt’s11 study 
included oxygenated compounds other than alcohols, esters, and triglycerides. Although the data set used 
study includes more compounds with CN data than other studies, it contains fewer olefins than data set of 
Saldana et al.25 and fewer other oxygenates than the data set of Dahmen and Marquardt.11 These small 
differences are primarily the result of excluding data for fuels with ambiguous molecular structures. 
` 
Table 5 contains a comparison of the ON data sets used with the data sets used in three other studies of 
structure-property relationships for ON. As was the case for CN, the data set used in this study contains 
ON data for more compounds than other published studies. It is the only data set used to develop 
property-structure relationships for ON that includes oxygenated compounds. The data set used by 
Albahri contains ON data for seven more olefins than this study. The difference is primarily the result of 
eliminating data for which the structure of the compound is not specified unambiguously. 
 
The data set used in this study are more comprehensive than the data set used to develop other structure-
property relationships for CN and ON. 
 
3.0 CONSTRUCTING THE ARTIFICIAL NEURAL NETWORK 

3.1. Background Information Concerning Artificial Neural Networks 

An ANN is an acyclic directed graph consisting of multiple layers of interconnected nodes. Figure 6 is an 
illustration of a simple ANN. The lowest layer of nodes (black) are the input nodes, and they correspond 
to the values of the independent variables. The middle layers (blue) are the hidden nodes. An ANN may 
 
 
Table 4. A comparison of data sets used to develop structure-property relationships for cetane number. 

 

Compound Type 
Number of Compounds 

Lapidus et al.40  Saldana et al.20 Dahmen & 
Marquardt11 This Study 

Paraffins 32 65 24 77 

Olefins and Alkynes 0 46 18 39 

Naphthenes 31 31 10 47 

Aromatics 0 60 8 65 

Alcohols 0 22 10 28 

Esters and Triglycerides 0 61 18 130 

Other Oxygenates 0 0 66 63 

Total 63 284 154 449 
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Table 5. A comparison of data sets used to develop structure-property relationships for octane numbers. 
 

Compound Type 
Number of Compounds 

DeFries et al.14  Albahri13 Lapidus et al.40 This Study 

Paraffins 35 44 32 45 

Olefins and Alkynes 0 75 0 68 

Naphthenes 0 32 31 43 

Aromatics 64 37 0 37 

Alcohols 0 0 0 13 

Esters and Triglycerides 0 0 0 3 

Other Oxygenates 0 0 0 9 

Total 99 188  63 218 
 
 
have one or more layers of hidden nodes. The number of hidden nodes does not necessarily equal the 
number of input nodes. The simple example shown in Fig. 6 has only a single layer of hidden nodes. The 
top layer consists of the output nodes (red). The simple ANN shown in Fig. 1 contains only a single 
output node, but ANN often includes multiple output nodes. The output nodes correspond to the 
dependent variables. The edges in an ANN connect adjacent layers of nodes in the graph. Edges connect 
nodes in nonadjacent layers are not usually included in an ANN. The edges are directed from the lower 
layer of nodes to the next higher layer. Figure 6 shows edges connecting a node in a lower level of the 
ANN to all nodes in the next higher layer. This architecture is not a necessary feature of an ANN. A node 
need not be connected to all nodes in the next layer. 
 
The edges in an ANN correspond to variables in the model – 
independent variables or input parameters, dependent variables or 
output parameters, and intermediate variables. Variables are 
typically defined on a finite interval, which is most often [0,1] or 
[-1,1]. Input and output parameters are scaled to fit on the interval.  
 
Nodes in an ANN correspond to functions. For the input nodes, the 
function is a simple identity function 

  Ok = Xk  , (5) 

where Ok is the output variable for input node k and Xk is the input 
parameter for input node k. Intermediate and output nodes are a 
scalar-valued function of a vector, as illustrated in Fig. 7. Ok is the 
output variable for node k and I is the vector of input variables. 
The input variables are combined linearly to obtain an intermediate 
scalar variable . 

 
  
zk = wo,k + wj ,k ⋅ I j

j=1

n

∑   (6) 
 

 
Fig. 6. A simple ANN. 
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where zk is the intermediate variable and wo,k and wj,k are empirical 
parameters or weighting factors determined from a regression 
analysis. Ok is typically a simple, sigmoidal function of zk. The 
logistic function is one of the most commonly used function to 
represent nodes in an ANN. 

 
  
Ok =

1
1+ e− zk

 . (7) 

Other functions, such as tanh-1, could be used in an ANN. 
 
The parameters for an ANN are determined by minimizing the 
error in the output parameters or dependent variables. The back 
propagation algorithm is often used to estimate the parameters.  
The back propagation algorithm is a gradient search that takes 
advantage of the structural properties and functional forms that are 
used for an ANN. Because it is an application specific algorithm, it 
is a very efficient method of determining ANN parameters. 
 
Much good work has been done developing and applying ANN technology. Unfortunately, much of the 
published literature is mired in the jargon of artificial intelligence. Some authors state that an ANN 
simulates the structure of the human brain. Others call ANN “machine learning.” When the hype and 
jargon is put aside, ANN technology can be seen as a useful method of nonlinear, multivariate regression 
analysis. In this study, ANNs were viewed as nonlinear regression analysis, so this report favors the 
language of statistics and regression analysis over the language of artificial intelligence. 
 
3.2. Structure of the Artificial Neural Network for Cetane and Octane Numbers 

The ANN used to correlate CN and ON data consisted of three layers of nodes – the input nodes, which 
represent functional groups that make up the molecule; the hidden nodes; and the output nodes, which 
represent CN, RON, and MON. The ANN has one input node representing each type of functional group. 
The value of the input node is the number of the corresponding functional groups in the molecule. 
Functional groups can be defined with differing levels of specificity. For example, all aliphatic alcohols 
could be represented by a single –OH group or they could be represented by three groups corresponding 
to primary, secondary, or tertiary alcohols. The number and type of functional groups used in the ANN 
was not predetermined. The need to add functional groups and to make finer distinctions between 
functional groups was determined as the network evolved. Likewise, the number of hidden nodes and 
connections between the hidden nodes and the output nodes was not predetermined.  
 
The number of a particular functional group in a molecule is defined on the set of nonnegative integers. 
To scale the number of functional groups in a molecule to fit on a scale of [0,1] requires the division of 
the number of functional groups by a predefined maximum. Such a simple arithmetic operation would 
transform Eq. (6) into the following equation. 

 
  
zk = wo,k + wj ,k ⋅

nj

nmax , jj=1

n

∑  , (8) 

where nj is the number of functional group j in the molecule and nmax,j is the maximum value of nj. The 
ratio nj / nmax,j  is Ij in Eq. (6). Because nmax,j is a constant, the quotient  wj,k / nmax,j    is also a constant. 
Equation (8), therefore, can be transformed into the following equation. 

 
 

Fig. 7.  An intermediate or 
output node in an ANN. 
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zk = Go,k + G j ,k ⋅nj

j=1

n

∑  , (9) 

where Go,k = wo,k and Gj,k = wj,k / nmax,j. From a practical and mathematical point of view, Eq. (9) is 
equivalent to Eq. (8). Scaling the input parameters for a group contribution method introduces an arbitrary 
and unnecessary parameter into the model. Therefore, the input parameters, which are the number of each 
type of functional group in the molecule, were not scaled in this study. Equation (9) was used with the 
parameters Gj,k being the group contribution factors for hidden node k. 
 
3.3. The Objective Function 

The parameters for the ANN were determined using an unweighted least squares regression analysis. The 
objective function for an unweighted least squares regression analysis is simply the sum of squared errors. 
 

 
  

SSE = CNcalc,i −CNdata,i( )
i∈CN Data
∑

2
+ RONcalc,i − RONdata,i( )

i∈RON Data
∑

2

+ MONcalc,i − MONdata,i( )
i∈MON Data
∑

2
  (10) 

where SSE is the sum of squared errors; CNcalc,i, RONcalc,i, and MONcalc,i are the values of CN, RON, and 
MON calculated from the ANN; and CNdata,i, RONdata,i, and MONdata,i are the measured values of CN, 
RON, and MON. Use of the sum of squares as the objective function can be problematic when applied to 
the ANN architecture used in this study. The parameters in Eqs. (6) and (9) are unbounded, which could 
lead to numerical problems when combined with the logistics function. The logistic function (Eq. (7) ) 
used for hidden and output nodes is approximately zero when zk < -7 and approximately unity when zk > 
7. This type of behavior can result in trivial solutions involving parameters with large absolute values.  
 
To avoid trivial solutions, a modified least squares objective function was used. 

 
  

MSSE = CNcalc,i −CNdata,i( )
i∈CN Data
∑

2
+ RONcalc,i − RONdata,i( )

i∈RON Data
∑

2

+ MONcalc,i − MONdata,i( )
i∈MON Data
∑

2
+ α ⋅ G j ,k

2

k
∑

j
∑ + wj ,k

2

k
∑

j
∑⎛

⎝⎜
⎞

⎠⎟

  (11) 

where Gj,k are the group contribution parameters applied to the inputs to the hidden nodes and wj,k are the 
weighting factors applied to the inputs to the output nodes. The value of α was set arbitrarily to 0.01. 
Including the squares of the parameters in the search helped to stabilize the numerical minimization 
without altering the solution significantly. The difference between SSE and MSSE was less than 1%. 
 
3.4. Constructing the Artificial Neural Network 

The ANN for CN and OC was developed in a stepwise fashion. The process began by selecting an initial 
working data set, which was subset of the overall data set consisting of simple molecules containing only 
a few functional groups. The optimum number of hidden nodes, connections between nodes, and 
parameters were determined for this initial set of compounds . Data were added to the working data set a 
few molecules at a time. The additional data represented either molecules with a new functional group or 
molecules with the same functional groups but increasing complexity. ANN structure and parameters 
were optimized each time the working data set was expanded. The process resembles a step regression 
analysis. 
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The initial working data set consisted of n-alkanes 
and terminal alcohols of n-alkanes. The structure of 
these molecules could be represented by three 
functional groups – the methyl group (–CH3), the 
methylene group (–CH2–), and the alcohol group 
(-OH). The search for the optimal ANN structure 
for this small working data set began by assuming a 
simple structure consisting of one hidden node with 
each hidden node connected to only one output 
node. Figure 8 is an illustration of the initial ANN 
structure.  
 
Calculations were performed using Microsoft Excel 
with Visual Basic for Applications (VBA). The 
ANN was implemented with VBA. Excel 
functioned primarily as a convenient input/output 
interface.  
 
The optimum model parameters were obtained by 
minimizing Eq. (11) using the Solver add-in in 
Excel. The particular algorithm used was the GRG 
Nonlinear Solver, which is a conditional gradient method.41 Equation  (11) is a non-convex function. 
Conditional gradient methods, like most minimization algorithms, do not guarantee global convergence 
for non-convex functions. Therefore, the constrained multistart option in the Solver add-in was used. The 
multistart option solves the minimization problem multiple times with random initial estimates, which 
increases the likelihood of convergence to a global minimum. 
 
Figure 9 shows the CN results for the initial ANN. The initial network gives reasonable results for CN of 
primary alcohols and n-alkanes with carbon numbers greater than 5. Failure of the initial ANN to capture 
CN behavior at low carbon numbers indicates that the initial ANN is inadequate and needs to be 
modified. The following procedure was used to determine the optimum modifications to the ANN. 
 

1. The network was modified by adding an additional hidden node or by adding an additional 
connection between a hidden node and an output node. 

 
2. Parameters for the modified network were 

optimized by minimizing the modified sum 
of squared errors. 

 
3. An F-test was used to determine if the 

modifications improved the model 
significantly. 

 
A. If Prob(F) ≥ 0.9, the modification was 

accepted because it resulted in a 
significant improvement. 

 
B. If Prob(F) < 0.5, the modification was 

rejected because it resulted in no 
improvement. 

 

 
 

Fig. 8. Initial ANN structure. 

 
 
Fig. 9. A comparison of data to CN predictions 

for the initial ANN. 
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C. If 0.5 ≤ Prob(F) < 0.9, the residuals were examined. If the modification eliminated one or 
more outliers, it was accepted. An outlier was defined as a measurement that exhibited large 
deviations from the model. If no outliers were eliminated, the modification was rejected. 

 
4. Steps 1 – 3 were repeated until no additional improvements could be identified. 

 
In the second step of the procedure, separate F-tests were performed for CN, RON, and MON. The 
following equation defines the F statistic. 

 
  
F =

SSE2 − SSE1( ) DOF1 − DOF2( )
SSE2 DOF2

  (12) 

where SSE1 is the sum of squared errors for the current model, SSE2 is the sum of squared errors for 
proposed model modification, DOF1 is the degrees of freedom for the current model, and DOF2 is the 
degrees of freedom for the proposed modification. The degrees of freedom are the number of 
measurements minus the number of parameters. The number of parameters is not the total number of 
parameters in the model, but the number of parameters that affect the given output. For example, the 
number of parameters for MON in the ANN shown in Fig. 8 only includes the parameters associated with 
hidden node MON-1 and output node MON because they are the only parameters that affect the predicted 
value of MON. 
 
Figure 10 shows the modified ANN for the initial working data set. The modifications include an 
additional node for CN and additional connections between the hidden nodes and output nodes for RON 
and MON. Figure 11 shows the CN results for the modified network. The additional hidden node for CN 
accounts for the qualitatively different behavior of n-alkanes and primary alcohols with low carbon 
numbers. The additional hidden node increases the number of parameters in the model, but it also 
improves the quality of the fit significantly. The additional links between RON and MON suggests that 
these qualities are dependent on common underlying molecular structures. 
 
The ANN illustrated in Fig. 10 was expanded in a deliberate, step-wise fashion to include more 
compounds and functional groups. Each step of the network development process was initiated by 
expanding the compounds in the working data set one function group at a time (e.g. adding 

 
 
Fig. 10. The modified ANN for the initial working 

data set. 

 
 

Fig. 11. A comparison of data to CN predictions 
for the modification of the initial ANN. 
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monosubstituted alkanes to the initial working data set) or expanding the complexity of the compounds in 
the working data set one level at a time (adding polysubstituted alkanes to a working data set that contains 
monosubstituted and disubstituted alkanes). The following procedure was used to expand and optimize 
the ANN. 
 

1. Data for fuels containing one additional functional group or one additional level of complexity 
were added to the working data set. 

 
2. If a new functional group was added to the working data set, a new input node was added to the 

ANN, and that node was connected to all hidden nodes in the network. 
 
3. Parameters for the expanded network were optimized using the expanded data set. 
 
4. The network was modified by 
 

A. making finer distinctions in the functional groups (e.g. defining functional groups for 
primary, secondary, and tertiary alcohols versus using a single generic alcohol group), 

 
B. adding connections between hidden nodes and output nodes, or 
 
C. adding additional hidden nodes. 
 

5. Parameters for the modified network were optimized. 
 
6. An F-test was used to determine if the modifications improved the model significantly. 
 

A. If Prob(F) ≥ 0.9, the modification was accepted because it resulted in a significant 
improvement. 

 
B. If Prob(F) < 0.5, the modification was rejected because it resulted in no improvement. 
 
C. If 0.5 ≤ Prob(F) < 0.9, the residual were examined. If the modification eliminated one or 

more outliers, it was accepted. If no outliers were eliminated, the modification was rejected. 
 
7. Steps 4 – 6 were repeated until no additional improvements could be identified. 
 
8. Steps 1 – 7 were repeated until 

all the data were included in 
the working data set. 

 
The final ANN consisted of 38 input 
nodes corresponding to 38 separate 
functional groups, 4 hidden nodes for 
CN and 4 hidden nodes for RON and 
MON. Figure 12 is an illustration of 
final ANN. Effectively, the final 
solution consists of two independent 
ANN – the first for CN and the 
second for RON and MON. The 
dependence of RON and MON on 
the same set of hidden nodes is not 
surprising. Both quantities measure a 
fuels performance in a spark-ignited 

 
 
Fig. 12. Final ANN structure for estimating CN, RON, and 

MON functional group contributions. 
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engine; and therefore, both should depend on the same underlying chemical structures. This dependence 
on common structures is supported by the high degree of correlation between RON and MON (r2 = 0.94) 
as illustrated in Fig. 13. CN depends on a different set of hidden nodes than RON and MON, which 
suggests that CN depend different chemical structures. The lack of dependence on common structures 
contradicts correlations between CN and ON a reported in the literature.42,43,44 However, these correlations 
were developed from limited data for gasoline and simple hydrocarbon mixtures. These data are not 
representative of the pure hydrocarbons and oxygenated hydrocarbons included in the data set used for 
this study. The RON and CN data compiled for this study are plotted in Fig. 14, which shows a poor 
correlation (r2 = 0.45) between CN and RON. The ANN structure shown in Fig. 12 accurately reflects the 
observed correlations between RON and MON and CN and RON. 
 
The functional groups used in the ANN are listed in Table 6. Some functional groups depend on the 
position of the group in the carbon chain or on the ring. This approach is similar to that used by Albahri.13 
The symbol C# in Table 6 indicates carbon number. Carbon number is determined by locating the longest 
chain on which the functional group is located and counting from the nearest terminal carbon or oxygen 
atom in the chain. The CN and ONs for ethers and esters were found to have a nonlinear dependence on 
the number of groups in the molecule. The nonlinearities were accounted by defining different function 
groups for the first, second, and third and higher ether group in the molecule and defining different 
functional groups for the first, second, and third ester groups.   
 
All parameters for the ANN-based group contribution model are given in Appendix C. Appendix C also 
includes eight examples illustrating how the group structure of a molecule is determined. 
 
3.5. Discussion of Quality of Fit and Errors 

Assessing the quality of fit for the ANN is difficultndue, in part, to the difficulty of summarizing complex 
multivariate data on a few simple plots. Results for straight-chain alkanes, alcohols, and terminal alkenes 
can be plotted as a function of carbon number as illustrated in Figs. 15 and 16. However, plots showing 
limited results can be deceiving. Figure 15 indicates that the ANN fits the CN data for n-alkanes and 
primary alcohols within measurement errors. Figure 16 shows very good agreement between the ANN 
and the data for CN and RON for terminal alkenes. However, these simple plots are not representative of 
the full range of regression errors. Furthermore, data for branched alkanes and alcohols cannot be plotted 
as a function of a single, representative parameter. Different statistics and plots must be used to represent 
the data and the quality of the fit. 

 
 

Fig. 13. MON as a function RON. 

 
 

Fig. 14. CN as a function RON. 
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Table 6. List of functional groups in the ANN. 
 

Class Group Class Group Class Group 

Paraffins –CH3 Alkynes ≡CH Aromatics =C< (para) 

 –CH2–  ≡C– Oxygenates –OH 

 –CH< (C# = 2) Naphthenes –CH2–  =O (aldehyde) 

 –CH< (C# = 3)  –CH<  =O (ketone) 
 –CH< (C# ≥ 4)  –CH< (ortho)  –O– (1st) 

 >C< (C# = 2)  >C<  –O– (2nd+) 

 >C< (C# ≥ 3)  =CH–  –O– (ring) 

Olefins =CH2  >C=  –O– (aromatic) 

 =CH– (C# = 2) Aromatics =CH–  –COOH 

 =CH– (C# = 3)  =C< (ring/ring)  –COO– (1st) 

 =CH– (C# ≥ 4)  =C<  –COO– (2nd) 

 >C= (C# = 2)  =C< (ortho)  –COO– (3rd) 
 >C= (C# ≥ 3)  =C< (meta)   

 
 
Bias, standard deviation, and correlation coefficient (r2) are quantitative measure of goodness of fit. 
Table 7 summarizes these quantities for the ANN-based group contribution method. Estimates exhibit a 
small, insignificant bias for CN and RON and no bias for MON. Standard deviations for errors in the 
ANN predictions are larger than the estimated variability in the data. A t-test confirms that the differences 
are significant. Therefore, the ANN does not fit the data within experimental errors. Correlation 
coefficients for CN of hydrocarbons, RON and MON are greater than 0.9. The correlation coefficient for 
CN of oxygenated hydrocarbons is 0.86.  The lower correlation coefficient for oxygenated hydrocarbons 
is due in part to the greater uncertainty in the data. Data uncertainty accounts for 32% of variance in CN 
errors for hydrocarbons, but it accounts for 43% of the variance in errors for oxygenated hydrocarbons.   
 
 

 
 

Fig. 15.  ANN results for CN of n-alkanes and 
primary alcohols. 

 
 

Fig. 16. ANN results for CN and RON of terminal 
alkenes. 
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Table 7. Bias, standard deviation, and correlation coefficients for the ANN. 
 

Property Bias in 
Correlation 

Standard Deviation  
Correlation 
Coefficient Data 

Uncertainty 
Correlation 

Error 

CN - Hydrocarbons 0.1 4.1 7.2 0.93 

CN - Oxygenates -0.2 7.5 11.4 0.86 

RON -0.1 3.4 6.9 0.93 

MON 0.0 3.3 6.1 0.91 
 
 
Smolenskii et al.18 state the accuracy of a structure-property relationship decrease with increasing  
“complexity” of the property. Reasonably accurate models can be developed for properties with a low 
level of complexity, such as density and critical properties. Models with a moderate degree of complexity, 
such as CN, are often inaccurate. Therefore, correlation coefficients between 0.86 and 0.93 are indicative 
of a reasonably successful model of moderately complex properties. 
 
Figures 17 – 20 are plots of predicted values versus measured values for CN and ONs. The scatter about 
the diagonal for CN of hydrocarbons, RON, and MON indicate that the absolute model uncertainty is 
constant for these properties. However, Fig. 18 indicates that uncertainty in CN for oxygenated 
hydrocarbons increases with increasing CN. A maximum likelihood fit of the model errors to a zero-mean 
normal distribution confirm that absolute model uncertainty for CN of hydrocarbons, RON, and MON are 
constant and that uncertainty in CN for oxygenated hydrocarbons increase with CN according to the 
following linear equation 

   σ CN = 6.3+ 0.083⋅CN   (13) 

A plot of the CDF for model errors is another useful tool for understanding the nature of uncertainty. 
Figure 21 shows the CDFs for errors in CN. The CDFs for both hydrocarbons and oxygenated 
hydrocarbons are nearly linear (r2 = 0.97 for hydrocarbons and 0.96 for oxygenated hydrocarbons) on a 

 
 
Fig. 17. Predicted versus measured values of 

CN for hydrocarbons. 

 
 
Fig. 18. Predicted versus measured values of 

CN for oxygenated hydrocarbons. 
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normal probability scale indicating that the distributions of errors are approximately normal. The plot 
shows outliers in the tails of the distribution for the CN of oxygenated hydrocarbons. Outliers are points 
with large deviations from the normal distribution. Outliers constitute about 8% of the data for 
oxygenated hydrocarbons. They have a higher average carbon number than the other compounds (25 
versus 14) and a higher average CN (99 versus 54). Outliers consist primarily of high molecular-weight 
esters and triglycerides. The deviations for the normal distribution are more likely the result of increasing 
uncertainty with CN rather than a problem with the correlation or data. 
 
Figures 22 and 23 show the CDFs for RON and MON errors. Both CDFs are nearly linear on a normal 
probability scale (r2 = 0.96 for RON and 0.98 form MON) indicating normal distributions. The tails of the 
CDF for RON include a few outliers, but these only constitute less than 3% of the data. The CDF for 
MON has no outliers. 
 
3.6. Comparisons to Other Methods 

To evaluate whether an ANN-based group contribution method is superior to a more standard approach, 
two additional group contribution methods were 
developed as part of this study. The first method 
used an approach similar to Albahri.13 CN and ONs 
were correlated as a polynomial function of the 
sum of group contributions. In the second 
approach, neural networks consisting of a single 
hidden node and a single output node were 
developed for CN, RON, and MON. This second 
method is essentially the same as the first except 
that CN and ONs are correlated using a 
combination of logistic functions rather than a 
polynomial. Parameters for both correlations were 
determined using the complete data set developed 
for this study. Descriptions of both methods and 
their associated parameters are given in 
Appendix D. 

 

 
 
Fig. 20. Predicted versus measured values of 

MON. 

 
 
Fig. 19. Predicted versus measured values of 

RON. 

 
 
Fig. 21. CDFs for errors in CN predictions for 

hydrocarbons and oxygenated 
hydrocarbons. 
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Correlation coefficients for the ANN-based method and the two alternative group contribution methods 
are summarized in Table 8. Because all three correlations were developed using the same data set, a 
comparison of correlation coefficients is a fair comparison of methods. Correlation coefficients for the 
group contribution method based on an ANN are greater than the correlation coefficients for the other two 
methods indicating that the ANN is superior to the other two methods. A simple comparison of 
correlation coefficients is a qualitative test. Statistical F-tests confirmed this conclusion for CN, RON, 
and MON a confidence level greater than 0.99. 
 
Comparisons were also made to published group contribution methods for estimating CN, RON, and 
MON. These other methods were used to compute the CN, RON, and MON for all applicable compounds 
in the data set developed for this study. Correlation coefficients for the each method and each class of 
compounds are listed in Table 9. Because these published correlations did not include all classes of 
compounds considered in this study, correlation coefficients are given for each class of compound. If the 
method was not applicable to a particular class, the entry in Table 10 was left blank. 
 
The correlation coefficients in Table 9 shows that the ANN-based group contribution method developed 
in this study is superior to other group contribution methods for both hydrocarbons and oxygenated 
hydrocarbons. However, correlation coefficients tell only part of the story. All of the group contribution 
methods listed in Table 9 perform well for compounds similar to those in the data sets used in their 
development. However, predicted values of CN and ONs are poor when the correlations are extrapolated. 
The group contribution method of DeFries et al. performs well for n-alkanes and alkanes with single 
methyl side groups, but it performs poorly for polysubstituted alkanes and aromatics. Damen and  
 
 

Table 8. Comparison of correlation coefficients for different group contribution methods. 
 

Method 
Correlation Coefficients (r2) 

CN RON MON 

ANN 0.90 0.93 0.91 

Simplified ANN 0.80 0.84 0.88 

“Standard” Method 0.80 0.85 0.80 
 

 
 
Fig. 22. CDFs for errors in RON predictions. 

 
 
Fig. 23. CDFs for errors in MON predictions. 
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Table 9.  Comparison of correlation coefficients for the ANN group contribution method of this study to 
published group contribution methods. 

 

Compound Class 
CN RON MON 

This 
Study 

DeFries 
et al.14 

Dahmen & 
Marquardt11 

This 
Study 

Albahri1
3 

This 
Study Albahri13 

Paraffins 0.91 0.73 0.53 0.94 0.86 0.95 0.87 

Olefins and Alkynes 0.90 - -0.48 0.90 0.53 0.65 -1.55 

Naphthenes 0.81 - 0.25 0.85 0.75 0.89 -0.40 

Aromatics 0.87 0.44 0.58 0.76 -3.28 * * 

Oxygenates 0.85 - 0.41 0.62 - 0.56 - 

Total 0.90 0.64 0.53 0.93 0.55 0.91 -1.16 
*Insufficient data for meaningful evaluation of r2. 
 
 
Marquardt’s method performs best when applied to straight chain hydrocarbons and oxygenated 
hydrocarbons containing more the four carbon atoms. However, their method gives poor  
results when applied to low molecular weight compounds and polysubstituted molecules. Albahri’s group 
contribution method gives good results when applied to compounds with carbons numbers between four 
and nine. Poor results are obtained when the method is applied to compounds containing a higher or lower 
number of carbon atoms or heavily substituted hydrocarbons. 
 
The poor overall performance of the published group contribution methods relative the ANN-based 
method is not simply the result of differences in methodology. Table 9 shows correlation coefficients for 
the two alternative group contribution methods developed as part of this study are mathematical similar to 
the published studies, but they were devel`oped using the data set compiled for this study. A comparison 
of the correlation coefficients in Tables 9 and 10 shows that the standard group contribution methods 
developed in this study are in much better agreement with the data than the published group contribution 
methods. Thus, the accuracy of the ANN-based group contribution method is not solely the result of using 
a more complex mathematical formulation. The use of a more extensive data set is a major factor, if not 
the most important factor, contributing to the improved accuracy of ANN-based group contribution 
method developed in this study. 
 
4.0 CROSS VALIDATIONS 

The discussion of errors in Section 3.5 addresses the issue of goodness of fit, or how well the ANN fits 
the data. Goodness of fit is related to, but not identical to, the predictive power of a statistical model. 
Because an ANN model contains a large number of parameters than other group contribution methods, 
the possibility exists that good results were obtained because model over fits the data. Models that over fit 
the data often have low predictive power, and they tend to be unreliable when extrapolated. The 
predictive power of a group contribution method describes the accuracy of the method when applied to 
molecules not included in the data used to develop the correlation. Two cross validation studies were 
done to assess the predicative power of the ANN-based group contribution method. 
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4.1. 10-Fold Cross Validation 

In a 10-fold cross validation, the original data set is divided into ten random, disjoint subsets.45 Each 
subset contains approximately the same number of members,1 and the union of these ten subsets contains 
all the elements of the original data set. The data set for this study consists of a list of compounds with 
associated measurements of CN, RON, or MON. If more than one property measurement is available for 
a given compound, that compound is listed multiple times in the data set. The data set used in this study 
contained 743 elements.  For the 10-fold cross validation, the original data set was divided into subsets 
containing 74 or 75 elements. Only 106 of the 743 entries in the data set have values for CN, RON, and 
MON. The majority of entries include values for only one of these three properties. When the data was 
divided into ten random subsets, no attempt was made to ensure that each subset contained equal 
measurements for CN, RON, or MON. The average number of measurements in each subset was 58 for 
CN, 28 for RON, and 25 for MON. The maximum deviation from these mean was ±7. 
 
Of the 10 subsets, one was selected as the validation set for testing the model. Data for the remaining 9 
subsets were combined, and used to determine a new set of model parameters. These new model 
parameters were then used to predicted CN, RON, and MON for the compounds in the validation set; and 
prediction errors were evaluated. This process was repeated until all ten subsets were used as validation 
sets.  
 
Figures 24 – 26 show the CDFs for errors in the regression analysis and predictive errors obtained from 
the 10-fold cross validation. The CDFs for the regression analysis and the 10-fold cross validation are 
nearly identical for CN, RON, and MON indicating that the ANN has good predictive power and does not 
over fit the data. Standard deviations for the data, the regression analysis, and the 10-fold cross validation 
are given in Table 11. The standard deviation for errors in the regression analysis and 10-fold cross 
validation are both significantly greater than the variability of the data indicating that the model does not 
fit or predict the data within in experimental errors. Table 11 also includes the results of an F-test 
comparing the standard deviations of the validation test to the standard deviations of the regression 
analysis. The standard deviations for the validation test are larger, but the significance level is low. Also, 
the differences in standard deviations are less than 5%. The low significance of differences in standard 
deviations confirms the qualitative conclusion based on comparison of the CDFs for errors. 
 

                                                        
1 The subsets can only contain equal number of elements if the number of elements in the original data set is a multiple of 10. 

 
 
Fig. 24. CDFs for errors in CN predictions 

obtained from the regression analysis 
and the 10-fold cross validation. 

 
 
Fig. 25. CDFs for errors in RON predictions 

obtained from the regression analysis 
and the 10-fold cross validation. 
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4.2. Extrapolation Test 

As noted in Section 3.6, published group contribution 
methods for estimating CN and ONs gave poor results 
when extrapolated. A second cross validation study was 
devised for this study to determined whether the ANN-
based group contribution method could be extrapolated 
with a reasonable degree of confidence.  
 
In the extrapolation test, CN and ONs were evaluated 
separately. For CN, the original data set was divided into 
two subsets based on carbon number. The first subset 
contained compounds ranging from C6 to C16. Model 
parameters were determined from this subset. The 
validation set included all compounds not contained in 
the first data set. CN was determined for this data set, 
and the errors in the model prediction were evaluated. 
This calculation is an extrapolation of the model based 
on carbon number. A similar procedure was used to 
evaluate extrapolation of ONs. The first subset used to 
determine parameters for ON contained compounds 
ranging from C5 to C9. The validation set consisted of all other compounds in the original data set. 
 
To determine the ANN could be extrapolated beyond the data set, the errors in the validation sets were 
compared to the errors in the regression analysis for the same set of compounds. A statistical F-test was 
used for the comparison. The null hypothesis was that the errors for the validation sets are significantly 
greater than the errors in the regression analysis for the same set of compounds. The probabilities that the 
null hypothesis is true are given in Table 11. The F-test results indicate a lack of strong evidence 
supporting they null hypothesis. Based on the lack evidence to the contrary, it was concluded that 
moderate extrapolations of the ANN-based group method does not result in large errors or unrealistic 
results. 
 
 

Table 10. Comparison of standard deviation in data, regression analysis errors, 
and 10-fold validation errors. 

 

Property 

Standard Deviation  Probability that 
Validation 

Errors Greater 
Than Regression 

Errors 
Data Uncertainty Regression Error 10-Fold 

Validation Error 

CN - Hydrocarbons 4.1 7.2 7.3 0.64 

CN - Oxygenates 7.5 11.4 11.8 0.71 

RON 3.4 6.9 7.2 0.77 

MON 3.3 6.1 6.4 0.80 

 
 
Fig. 26. CDFs for errors in MON predictions 

obtained from the regression analysis 
and the 10-fold cross validation. 
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Although the results of the extrapolation test were 
positive, the scope of the test was limited to 
moderate extrapolation of carbon number. This 
test does not prove that the ANN-based group 
contribution method is universally applicable. For 
example, the extrapolation test does not imply that 
the ANN-based method will give accurate results 
if applied to compounds containing large numbers 
of oxygenated functional groups, such as sugars or 
polyalcohols. The test, however, does provide 
some assurance that moderate extrapolation will 
result in physically reasonable results. 

 
5.0 DISCUSSION  

The accuracy of a structure-property relationship depends on the complexity of the property.18 Enthalpy 
of formation in the vapor phase is a simple property that can be approximated by summing bond energies. 
Such a property can be readily correlated with a standard group contribution method. Empirical models of 
complex properties, such as freezing point, are senseless. Freezing depends on details of the molecular 
shape and short range interaction among function groups which are difficult or impossible to capture in a 
group contribution method or other structure-property relationship. CN and ONs are moderately complex 
properties. These properties depend on reaction kinetics involving complex interaction among function 
groups.  
 
Several group contribution methods and other structure-property relationships have been published for 
estimating CN and ONs. Most of these methods are applicable only to hydrocarbons and they are based 
on limited set of data in terms of molecular size and complexity. The group contribution methods 
evaluated in this study were found to be reasonably accurate when applied to compounds similar to those 
in the data set used to develop the correlation. However, extrapolating these group contribution methods 
resulted in inaccurate or unrealistic predictions. 
 
CN and ONs are moderately complex properties that cannot be accurately represented by a standard 
group contribution method. A successful structure-property relationship for CN and ONs requires a 
mathematical formulation that captures a greater degree of complexity than the standard methods. In this 
study, an ANN-based group contribution method was investigated as method for correlating CN, RON, 
and MON to molecular structure of hydrocarbons and oxygenated hydrocarbons. The data set used to 
develop the ANN-based group contribution method included compounds with a broad range of carbon 
numbers (C1 – C57), molecular complexity, and functional groups. To ensure that error estimates 
accurately reflected the inherent variability in CN and ON data,38 multiple measurements were included in 
the data set when they were available. 
 
The statistically informed approach used to develop the ANN-based group contribution method resulted 
in what is effectively two separate ANNs – one for CN and the other for RON and MON. Although 
attempts have been made to correlate octane and cetane numbers,42,43,44 the data compiled for this study 
does not support such a relationship. Separate networks for CN and ONs reflect the lack of a significant 
correlation between CN and RON and CN and MON. The statistically informed approach led to the 
position-dependent function groups similar to the functional groups used in Albahri’s13 group contribution  
method for RON and MON. The position dependent function groups are indicative of the complex nature 
of CN, RON, and MON. 
 

Table 11. Results of F-test for extrapolation 
validation sets. 

 

Property Probability Null 
Hypothesis is True 

CN 0.54 

RON 0.48 

MON 0.48 
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The ANN-based group contribution method developed in this study was successful in the sense that could 
represent broad range of data with a reasonable degree of accuracy, it has good predictive power, and it 
can be extrapolated beyond the base data set with a reasonable degree of confidence. Furthermore, it is 
more accurate than published group contribution methods and applicable to a broader range of 
compounds. The ANN-based group contribution method is only moderately successful in the sense that it 
could not represent the data within the estimated variability of the data. 
 
When using the ANN-based group contribution method to estimate CN, RON, or MON, uncertainty in 
the predicted value should be based on the standard deviations obtained from the 10-fold validation 
because they are indicative of the prediction errors rather than the regression errors. Estimation errors for 
the ANN, which correspond to 2 standard deviations, are given in Table 12. Errors are constant for the 
CN of hydrocarbons, RON of all compounds, and MON of all compounds. Errors for CN of oxygenated 
hydrocarbons are a linear function of the predicted 
CN. These results are similar to the correlation error 
bands shown in Figs. 17 – 20. 
 
6.0 CONCLUSIONS 

The ANN-based group contribution method 
developed in this study for estimating CN, RON, 
and MON is superior to other group contribution 
methods including published group contribution 
methods and standard group contribution methods 
developed as part of this study. The cross validation 
tests demonstrate the predictive power of the new 
ANN-based method. Prediction errors are only 
slightly greater than the regression errors. Also, the correlation gives reasonable results when 
extrapolated. The positive cross validation results shows that, in spite of having significantly more 
empirical parameters than standard group contribution methods, the ANN-based method does not over fit 
the data.The success of the ANN-based group contribution method can be attributed to three factors: 
  

• mathematic formulation – the more complex mathematic structure of the ANN is able to account 
for the complex interactions among groups better than standard group contribution methods;  

 
• methodology – the statistically informed approach ensured that subtleties in the function 

dependence of CN and ONs on structure were account for without over fitting the data; and 
 
• data – the large, more comprehensive data set ensured a more robust model. 

 
Because the ANN-based group contribution method for estimating CN, RON, and MON is applicable to a 
broad range of hydrocarbons and oxygenated hydrocarbons, it is a reliable tool for evaluating new 
advanced biofuels during the early stages of the development. First, the method could be used to evaluate 
whether a proposed fuel is worth pursuing. A compound with a low CN would not make a good diesel 
fuel, while compounds with low RON and MON would be poor substitutes for or additives to gasoline. 
When several viable fuels are being considered, the ANN-based method could be used to rank the 
alternative to focus research efforts on the best option. Finally, CN and ONs are qualitative indicators of 
economic value. Fuels with high CN or ONs have greater economic value than fuels with low CN or 
ONs. Fuels with RON greater than 120 are potential octane boasters and, therefore have a value greater 
than their fuel value. Early evaluation of potential biofuels will help focus research efforts and funds on 
the best options.  
 

Table 12. Estimation errors for the ANN-based 
group contribution method. 

 
Property Estimation Error 

CN – Hydrocarbons ±15 

CN – Oxygenates ±(9 + 0.26.CN) 

RON ±14 

MON ±13 
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APPENDIX A 
CETANE NUMBER VERSUS DERIVED CETANE NUMBER 

Several methods are available for determining the cetane number (CN) of diesel fuels. The standard test 
method is specified in ASTM D614.1 A common alternative to the standard method is based on 
measurement of ignition delay and a correlation relating ignition delay to CN. The CN number 
determined from ignition delay is called derived CN (DCN). The procedures for measuring ignition delay 
determining DCN are given in ASTM D6890.2 
 
When developing a structure-property relationship for CN, the question arises as to whether CN and DCN 
should be considered as separate properties, as is the case for research and motor octane number, or 
whether they should be considered the same property measured using different techniques? The National 
Renewable Energy Laboratory’s (NREL’s) compilation of CN data3 contains several compounds with 
data for CN as determined using ASTM D614 and DCN determined using ASTM D6890. These data 
were used to determine what, if any, differences exist between CN and DCN. 
 
Figure A-1 shows DCN as a function of CN. The plot includes data for hydrocarbons and oxygenated 
hydrocarbons. Three models of the relationship between DCN and CN were evaluated – a linear model, a 
linear model with and intercept of zero, and a constant bias. The linear model had the minimum sum of 
squares and the linear model with an intercept of zero had the maximum sum of squares. However, based 
on an F-test, none of the three models was significantly better than the others. Therefore, the simplest 
model, which is a constant bias, was used to relate CN to DCN. 
 
The average deviation of the DCN from the CN or bias is +2.7. The standard deviation about the mean is 
5.3. The bias in the DCN is smaller than the standard deviation; but according to a t-test, the bias is 
significant different from zero. The confidence level for this conclusion is greater than 99%. Using the 
methodology discussed in Section 2.2, the variability in CN data has a standard deviation of 5.8. The 
constant bias model relating DCN to CN, 
therefore, fits the data within the uncertainty 
of the CN data. 
 
Based on the limited amount of data 
considered in this study, DCN is a biased 
estimate of CN. Although the bias is 
statistically significant it is small relative the 
variability in CN measurements. Furthermore, 
diesel fuels of practical interest have CNs 
greater than 40, so the bias is less than 7% of 
the absolute values of CNs of practical 
interest. From a practical point of view, the 
small bias is not significant. Therefore it is 
appropriate to include both CN and DCN in a 
data set used to develop a group contribution 
method for estimating CN. 
 

Fig. A-1. DCN as a function of CN for hydrocarbons 
and oxygenated hydrocarbons. 
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APPENDIX B 
OCTANE AND CETANE NUMBER DATA TABULATION 

 
Table B-1. Cetane and Octane Number Data for Paraffins. 

 

Compound Name Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Ethane C2H6    114.9 100.0  99.0   
Propane C3H8 -20.0   111.0 100.0  96.6   
2-Methylpropane C4H10    102.1   97.0   
n-Butane C4H10 22.0   94.0 95.0  89.1   
2-Methylbutane C5H12 21.0   93.0 96.0  89.6  93 
2,2-Dimethylpropane C5H12    85.5   80.2   
n-Pentane C5H12 30.0   61.8 58.0  63.2   
2-Methylpentane C6H14 34.0 29.0 34.5 73.4 75.0  73.5  77 
2,2-Dimethylbutane C6H14 24.4 21.0  91.8 96.0  93.4  97 
2,3-Dimethylbutane C6H14    104.3   94.2   
3-Methylpentane C6H14 30.0   74.5   73.3   
n-Hexane C6H14 44.8 42.0 50.0 29.0 24.8 34.0 26.0  33.0 
2-Methylhexane C7H16 43.5   42.4   46.4   
2,2-Dimethylpentane C7H16 30.0   92.8 89.0  95.6 89  
2,2,3-Trimethylbutane C7H16 12.9 9.0  112.1 113.0  101.3  103 
2,3-Dimethylpentane C7H16 21.0 30.0  91.1 88.0  88.5 83  
2,4-Dimethylpentane C7H16 29.0 28.0  83.1  88.0 83.8 83  
3-Ethylpentane C7H16 34.1   65.0   69.3   
3-Methylhexane C7H16 27.0   52.0  57.0 55.0  59 
3,3-Dimethylpentane C7H16    80.8   86.6   
n-Heptane C7H16 56.3 53.0 56.3 0.0   0.0  4 
2-Methyl-3-ethylpentane C8H18 12.0   87.3 81.0  88.1 79  
2-Methylheptane C8H18 52.6 47.0 56.2 21.7 19.0  23.8  29 
2,2-Dimethylhexane C8H18 40.0   74.0   80.0   
2,2,3-Trimethylpentane C8H18 14.0   109.6 106.0  99.9  100 
2,2,4-Trimethylpentane C8H18 21.0   100.0 96.0  100.0 97  
2,3-Dimethylhexane C8H18    71.3   78.9   
2,3,3-Trimethylpentane C8H18 17.0   106.1  111.0 99.4  102 
2,3,4-Trimethylpentane C8H18 14.0 11.1 18.9 102.7   95.9   



LA-UR-16-25529  Group Contribution Method for Estimating 
  Cetane and Octane Numbers 

July 2016   36 

Compound Name Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

2,4-Dimethylhexane C8H18 29.0   71.3 62.0  69.9 67  
2,5-Dimethylhexane C8H18    65.2   55.7   
3-Ethylhexane C8H18    33.5   52.4   
3-Methyl-3-ethylpentane C8H18    80.8   88.7   
3-Methylheptane C8H18 37.0   26.8 27.0  35.0 35  
3,3-Dimethylhexane C8H18    55.5   83.4   
3,4-Dimethylhexane C8H18 20.0   75.5 71.0  81.7 73  
4-Methylheptane C8H18    26.7   39.0   
n-Octane C8H18 63.8 58.2 65.0 0.0   0.0   
2-Methyloctane C9H20 39.0   7.0   11.0   
2,2-Dimethyl-3-ethylpentane C9H20    112.1   99.5   
2,2-Dimethylheptane C9H20 49.0   50.3  52.0 60.5 54  
2,2,3,3-Tetramethylhexane C9H20    112.8   92.4   
2,2,3,3-Tetramethylpentane C9H20    116.8   95.0   
2,2,5-Trimethylhexane C9H20 24.0         
2,4-Dimethyl-3-ethylpentane C9H20    105.3   96.6   
3,3-Diethylpentane C9H20 17.0   84.0 83.0  91.6  97 
3,3,5-Trimethylheptane C9H20    86.5   88.7   
n-Nonane C9H20 73.0 60.9 74.0       
2,2-Dimethyloctane C10H22 59.0 55.0  49.0   46.0   
2,6-Dimethyloctane C10H22 51.7         
n-Decane C10H22 76.9 65.0 83.0       
n-Undecane C11H24 81.1 79.0 83.0       
2,2,4,5,6-Pentamethylheptane C12H26 9.0         
2,2,4,6,6-Pentamethylheptane C12H26 9.0         
2,7-Dimethyl-4,5-diethyloctane C12H26 39.0         
3-Ethyldecane C12H26 47.0         
4,5-Diethyloctane C12H26 20.0 18.0  0.0   25.0   
n-Dodecane C12H26 87.6 72.9 87.6       
2,5-Dimethylundecane C13H28 58.0         
4-Propyldecane C13H28 39.5         
5-Butylnonane C13H28 53.0         
7,8-Dimethyltetradecane C13H28 40.5         
n-Tridecane C13H28 90.0 88.0 91.0       
n-Tetradecane C14H30 96.1 85.1 96.1       
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Compound Name Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

2,7-Dimethyl-4,5-diethyloctane C14H30 39.0         
2,6,10-Trimethyldodecane C15H32 58.0 58.0 59.1       
n-Pentadecane C15H32 98.0 95.0 98.0       
2,2,4,4,6,8,8-Heptamethylnonane C16H34 15.0 14.2 15.1       
5-Butyldodecane C16H34 45.0         
7,8-Dimethyltetradecane C16H34 40.0         
n-Hexadecane (Cetane) C16H34 100.0 92.0 105.0       
7-Butyltridecane C17H36 70.0         
n-Hetadecane C17H36 105.0         
2-Methylheptadecane C18H38 67.0         
5,6-Dibutyldecane C18H38 29.8         
7,8-Diethyltetradecane C18H38 67.0         
8-Propylpentadecane C18H38 48.0         
9-Methylheptadecane C18H38 30.0         
9,10-Dimethylocatdecane C18H38 59.5         
n-Octadecane C18H38 108.3         
2-Methyloctadecane C19H40 104.4         
n-Nonadecane C19H40 110.0         
9,10-Dimethyloctadecane C20H42 60.0         
n-Eicosane C20H42 112.0         
7-Hexylpentadecane C21H44 83.0         
8-Hexylpentadecane C21H44 83.0         
2,9-Dimethyl-5,6-diisopentyldecane C22H46 48.0         
9-Heptylpentadecane C22H46 88.0         
10,13-Dimethyldocosane C24H50 56.0         
9-Heptylheptadecane C24H50 88.0         
9,10-Dipropyloctadecane C24H50 47.3         
9,10-Dipropyloctadecane C24H50 47.0         
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Table B-2.  Cetane and Octane Number Data for Olefins. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Ethene C2H4    97.3  100.0 75.6   
Propene C3H6    101.8 100.0  84.9   
1-Butene C4H8    98.8   79.9  80 
2-Butene C4H8    101.6   99.9 83  
2-Methylpropene C4H8    106.3   90.3   
Cyclopentene C5H8 20   140.0      
1-Pentene C5H10 20   87.9  92.0 77.1   
2-Methyl-1-butene C5H10 20   98.3   81.9   
2-Methyl-2-Butene C5H10    97.3   84.7   
2-Pentene C5H10    87.8  98.0 87.8   
3-Methyl-1-butene C5H10    97.5   97.5   
Cyclohexene C6H10 23.8         
1-Hexene C6H12 27 25.8 27.3 76.4  80.0 63.4   
2-Ethyl-1-butene C6H12    99.3   84.3   
2-Hexene C6H12    92.7 89.0  80.8   
2-Methyl-1-pentene C6H12    94.2   81.5   
2-Methyl-2-pentene C6H12 23.8   95.7   80.9   
2,3-Dimethyl-1-butene C6H12    101.3   82.8   
2,3-Dimethyl-2-butene C6H12    97.4   80.5   
3-Hexene C6H12  .  94.0 84.0  80.1   
3-Methyl-1-pentene C6H12    96.0   81.2   
3-Methyl-2-pentene C6H12    97.2   83.0   
3,3-Dimethyl-1-butene C6H12    111.7   93.3   
4-Methyl-2-pentene C6H12    98.9   81.0   
4-Methyl-1-cyclohexene C6H12 28.0         
1-Heptene C7H14 32   54.5   50.7   
2-Ethyl-3-methyl-1-butene C7H14    97.0   82.0   
2-Methyl-1-hexene C7H14    90.7   78.8   
2-Methyl-2-hexene C7H14    92.0   79.8   
2-Methyl-3-hexene C7H14    97.9   82.0   
2,3-Dimethyl-1-pentene C7H14    99.3   84.2   
2,3-Dimethyl-2-pentene C7H14    97.5   80.0   
2,3,3-Trimethyl-1-butene C7H14    105.3   90.5   
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

2,4-Dimethyl-1-pentene C7H14    99.2   84.6   
2,4-Dimethyl-2-pentene C7H14    100.0   84.6   
3-Ethyl-1-pentene C7H14    95.6   81.6   
3-Ethyl-2-pentene C7H14    93.7   80.6   
3-Heptene C7H14    90.0   79.3   
3-Methyl-1-hexene C7H14    82.2   71.5   
3-Methyl-2-hexene C7H14    92.0   79.8   
3-Methyl-3-hexene C7H14    96.2   81.4   
3,3-Dimethyl-1-pentene C7H14    103.5   86.1   
3,4-Dimethyl-1-pentene C7H14    98.9   80.9   
3,4-Dimethyl-2-pentene C7H14    96.0   82.2   
4-Methyl-1-hexene C7H14    86.4   74.0   
4-Methyl-2-hexene C7H14    97.6   83.0   
4,4-Dimethyl-1-pentene C7H14    104.4   85.4   
4,4-Dimethyl-2-pentene C7H14    105.3   90.6   
5-Methyl-1-hexene C7H14    75.5   65.0   
5-Methyl-2-hexene C7H14    94.3   81.2   
cis-2-Heptene C7H14 44.0   73.4   68.8   
4-Vinyl-1-Cyclohexene C8H12 32.0         
Vinyl cyclohexane C8H14 38.0         
1-Octene C8H16 41 40.0 41.0 28.7  39.0 34.7   
2-Methyl-1-heptene C8H16    70.2   66.3   
2-Methyl-2-heptene C8H16    79.8   73.1   
2-Methyl-3-heptene C8H16    94.6   80.6   
2-Octene C8H16 43.0         
2,2-Dimethyl-3-Hexene C8H16    106.0   88.5   
2,2,4-Trimethyl-1-pentene C8H16 10.0 -3.0 11.0       
2,3-Dimethyl-1-Hexene C8H16    96.3   83.6   
2,3-Dimethyl-2-Hexene C8H16    93.1   79.3   
2,3,3-Trimethyl-1-pentene C8H16    106.0   85.7   
2,3,4-Trimethyl-2-pentene C8H16    96.6   80.9   
2,4,4-Trimethyl-1-pentene C8H16    106.0   86.5   
2,4,4-Trimethyl-2-pentene C8H16    102.0 89.0  85.6   
2,4,4-Trimethyl-2-pentene C8H16    103.5   86.2   
2,5-Dimethyl-2-Hexene C8H16    95.2   82.2   
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 
2,5-Dimethyl-3-Hexene C8H16    101.9   85.4   
3-Ethyl-2-methyl-1-pentene C8H16    99.5   85.3   
3-Ethyl-2-methyl-2-pentene C8H16    95.6   82.0   
3,4,4-Trimethyl-2-pentene C8H16    103.0   86.1   
6-Methyl-1-heptene C8H16    63.8   62.6   
6-Methyl-2-heptene C8H16    71.3   65.5   
6-Methyl-3-heptene C8H16    91.3   82.0   
cis-3-Octene C8H16 38.1         
trans-3-Octene C8H16 34.0         
1-Nonene C9H18 51.0         
2-Methyl-1-octene C9H18       83.5   
2,6-Dimethylheptene C9H18 51.0      74.8   
3-Methyl-1-octene C9H18          
alpha-Pinene C10H16 25.0         
beta-Pinene C10H16 22.0         
1,9-Decadiene C10H18 41.0         
1-Decene C10H20 49.1         
1-Undecene C11H22 65.0         
4,4-Diethyl-1-heptene C11H22    79.8   74.6   
1-Dodecene C12H24 56.8         
1-Tetradecene C14H28 82.7         
7-Butyltridecene C15H24 36.0         
Bisabolene C15H24 32.0         
2,6,7-Trimethyl-2,6-tridecadiene C16H30 24.0         
1-Hexadecene C16H32 86.0         
2,2,6,6,8,8-Hexamethyl-4-
methylene-nonane C16H32 5.0         

4-Butyl-4-dodecene C16H32 45.0         
5-Butyl-4-dodecene C16H32 45.0         
3,12-Diethyl-3,11-tetradecadiene C18H34 26.0         
1-Octadecene C18H36 90.0         
7,10-Dimethyl-8-hexadecene C18H36 43.0         
8-Propyl-8-Pentadecene C18H36 45.0         
9-Methyl-9-heptadecene C18H36 66.0         
7-Hexyl-7-pentadecene C21H42 47.0         
10,13-Dimethyl-11-doeicosese C24H48 56.0         
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Table B-3. Cetane and Octane Number Data for Alkynes. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Acetylene C2H2    80.0      
2-Butyne C4H6    85.9   70.2   
2-Pentyne C5H8    98.0      
1-Heptyne C7H12 22.0   84.0      
3-Heptyne C7H12    40.0      
1-Octyne C8H14    50.5   51.5   
 
 

Table B-4. Cetane and Octane Number Data for Naphthenes. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Cyclopentane C5H10 6.1   101.6 100.0  84.9   
1,1,2-Trimethylcyclopropane C6H12 17.0   109.0   89.0   
Cyclohexane C6H12 16.9 13.2 18.0 84.0   77.6   
Methylcyclopentane C6H12 17.2   89.3 81.5  81.0   
1,1-Dimethylcyclopentane C7H14    92.3   89.3   
1,3-Diemthylcyclopentane C7H14 27.0   79.9   72.9   
Cycloheptane C7H14    38.9   40.8   
Ethylcyclopentane C7H14    67.2 62  61.2   
Methylcyclohexane C7H14 20.0 20.0 24.4 73.8   73.8   
1-Ethyl-3-methylcyclopentane C8H16 21.9   57.6   59.8   
1,1-Dimethylcyclohexane C8H16 21.0   87.3   85.9   
1,1,3-Trimethylcyclopentane C8H16 16.0   81.7   83.5   
1,2-Dimethylcyclohexane C8H16 23.0   80.9  86.0 78.7   
1,2,4-Trimethylcyclopentane C8H16 19.0   89.2   79.5   
1,3-Dimethylcyclohexane C8H16 23.0   69.3  77.0 67.6   
1,4-Dimethylcyclohexane C8H16    67.7  74.0 64.2   
Cyclooctane C8H16 22.3   71.0   51.2   
Ethylcyclohexane C8H16 35.8   46.5   40.8   
Isopropylcyclopentane C8H16    81.1   76.2   
n-Propylcyclopentane C8H16 37.0   31.2   28.1   
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

1-Ethyl-1-methylcyclohexane C9H18    68.7   76.7   
1-Ethyl-2-methylcyclohexane C9H18    74.0      
1-Ethyl-3-methylcyclohexane C9H18    58.0      
1-Ethyl-4-methylcyclohexane C9H18    54.0      
1,1,2-Trimethylcyclohexane C9H18 29.0   95.7  96.0 87.7  91 
1,1,2,4-Tetramethylcyclopentane C9H18 34.2   96.2   88.0   
1,1,3-Trimethylcyclohexane C9H18 29.3   81.3   82.6   
1,2,3-Trimethylcyclohexane C9H18 29.8   84.8   81.8   
1,2,4-Trimethylcyclohexane C9H18 30.5   72.9   74.3   
1,3,5-Trimethylcyclohexane C9H18 30.5   63.8   63.3   
Ethylcycloheptane C9H18    28.0   30.0   
iso-Butylcyclopentane C9H18 47.8   81.1   76.2   
iso-Propylcyclohexane C9H18 41.1   62.8   61.1   
n-Propylcyclohexane C9H18 52.0   17.8   14.0   
cis-Decalin C10H18 39.4 39.4 41.6       
Decalin C10H18 48.0 42.1 48.0       
trans-Decalin C10H18 32.0 31.8 32.0       
1-Methyl-2-propylcyclohexane C10H20 58.0   29.9  49.0 38.8   
1-Methyl-3-propylcyclohexane C10H20    39.0      
1-Methyl-4-propylcyclohexane C10H20    34.0      
iso-Butylcyclohexane C10H20 50.0   33.7   28.9   
n-Butylcyclohexane C10H20 46.5 46.5 48.0       
sec-Butylcyclohexane C10H20 35.1   51.0   55.2   
tert-Butylcyclohexane C10H20 29.9   98.5   89.2   
1-Methyl-2-butylcyclohexane C11H22    39.0      
1-Methyl-3-butylcyclohexane C11H22    34.0      
1-Methyl-4-butylcyclohexane C11H22    28.0      
Bicyclohexyl C12H20 51.0 47.4 53.0       
3-Cyclohexylhexane C12H24 36.0         
n-Propyldecalin C13H24 35.0         
Perhydrophenanthrene C14H24 38.8         
n-Butyldecalin C14H26 31.0         
sec-Butyldecalin C14H26 34.0         
tert-Butyldecalin C14H26 24.0         
1,3,5-Triisopropylcyclohexane C15H30 25.3         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

2-Methyl-3-cyclohexylnonane C15H30 63.0 56.0 70.0       
n-Octyldecalin C18H36 31.0         
1-Methyl-3-dodecylcyclohexane C19H38 70.0         
2-Cyclohexyltetradecane C20H40 57.0         
2-Methyl-2-
cyclohexyanylpentadecane C22H44 45.0         

1,2,4-Trimethyl-5-
hexadecylcyclohexane C25H50 42.0         

5-Cyclohexyleicosane C26H52 66.0         
 
 

Table B-5. Cetane and Octane Number Data for Aromatics. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Benzene C6H6 0.0 -10.0 15.0 101.0 98.0  93.0   
Toluene C7H8 -5.0 -5.0 3.0 121.0 114.0 124.0 103.0  107.0 
Styrene C8H8    103.0   100.2   
Ethylbenzene C8H10 4.0   108.3   97.9   
m-Xylene C8H10 -1.0   145.0   102.8   
o-Xylene C8H10 8.3   120.0   100.0   
p-Xylene C8H10 -4.0   146.0   101.2   
Indene C9H8    102.3   100.7   
2-propenylbenzene C9H10    102.1   100.1   
2,3-Dihydroindene C9H10    100.3   89.8   
cis-1-propenylbenzene C9H10    100.5   91.7   
trans-1-propenylbenzene C9H10    100.4   92.1   
1,2,3-Trimethylbenzene C9H12 7.6   118.0 100.5  101.1   
1,2,4-Trimethylbenzene C9H12 8.9   148.0 101.4  110.6   
1,3,5-Trimethylbenzene C9H12 8.0   170.0 106.0  100.6   
Isopropylbenzene C9H12 7.0   67.3  102.1 60.5  99.3 
m-Ethyltoluene C9H12    101.8   100.0   
n-Propylbenzene C9H12 16.0   101.5   98.7   
o-Ethyltoluene C9H12    100.2   92.1   
p-Ethyltoluene C9H12       97.0   
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Naphtalene C10H8 22.0         
Tetralin C10H12 13.0 8.9 21.3 96.5   81.9   
1-Methyl-2-isopropylbenzene C10H14    100.6   95.2   
1-Methyl-2-propylbenzene C10H14    100.3   92.2   
1-Methyl-3-propylbenzene C10H14    101.8   100.0   
1-Methyl-4-isopropylbenzene C10H14 4.0   101.4   60.5  97.7 
1-Methyl-4-propylbenzene C10H14 2.0      100.2   
1,2-Dimethyl-3-Ethylbenzene C10H14    100.4   91.9   
1,2,3,4-Tetramethylbenzene C10H14 17.0   100.5   100.0   
1,2,4,5-Tetramethylbenzene C10H14 1.0         
1,3-Diethylbenzene C10H14 5.0   103.0   97.0   
1,3-Dimethyl-4-Ethylbenzene C10H14    100.6   95.9   
1,3-Dimethyl-5-Ethylbenzene C10H14    102.7   100.2   
1,4-Diethylbenzene C10H14    100.6   95.2   
1,4-Dimethyl-2-Ethylbenzene C10H14    100.6   96.0   
Isobutylbenzene C10H14    101.6   98.0   
n-Butylbenzene C10H14 12.0   100.4   94.5   
sec-Butylbenzene C10H14 6.0   100.7   95.7   
tert-Butylbenzene C10H14 -1.0   103.0   100.8   
1-Methylnaphthalene C11H10 0.0 -4.0 0.0       
2-Methylnaphthalene C11H10 6.0         
Biphenyl C12H10 21.0 12.0 21.0       
2,6-Dimethylnaphthalene C12H12 -7.0         
n-Pentylbenzene C12H16 9.0 8.0 18.0       
m-Diisopropylbenzene C12H18 -7.0 -12.0 -3.0       
n-Hexylbenzene C12H18 26.0         
Dipheylmethane C13H12 11.0         
n-Propyltetralin C13H18 8.0         
n-Heptylbenzene C13H20 35.0 34.0 35.0       
1,2-Diphenylethane C14H14 1.0         
1-Butylnaphthalene C14H16 6.0         
2-(tert-Butyl)-naphthalene C14H16 3.0         
cis-n-Bityltetralin C14H20 18.0         
sec-Butyltetralin C14H20 7.0         
tert-Butyltetralin C14H20 17.0         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

trans-n-Butyltetralin C14H20 14.0         
2-Phenyloctane C14H22 33.0         
n-Octylbenzene C14H22 32.0 32.0 43.0       
1,3,5-Triisopropylbenzene C15H24 2.8         
n-nonylbenzene C15H24 50.0         
n-Octylxylene C15H24 20.0         
2-Methyl-2-(beta-naphthyl)hexane C17H22 10.0         
2-Phenyl-2-undecene C15H26 23.0         
2-Phenylundecane C15H28 51.0         
2-Octylnaphthalene C18H24 18.0         
4-Methyl-4-(2-naphthyl)heptane C18H24 9.0         
n-Octyltetralin C18H28 18.0         
4-Phenyldodecane C18H30 42.0         
n-Dodecylbenzene C18H30 51.0         
7-Phenyltridecane C19H32 41.0         
3,6-Dimethyl-3-(beta-
naphthyl)octane C20H28 18.0         

5-Methyl-5-(beta-naphthyl)nonane C20H28 12.0         
2-Phenyltetradecane C20H34 49.0         
n-Tetradecylbenzene C20H34 72.0         
2-Methyl-2-(beta-naphthyl)decane C21H30 18.0         
3-Ethyl-3-(beta-naphthyl)nonane C21H30 13.0         
2-Methyl-2-phenylpentadecane C22H38 39.0         
2-Methyl-4-isobutyl-
4phenylundecane C22H38 18.0         

2-Methyl-2-phenylheptadecane C24H42 39.0         
5-Butyl-5-phenyltetradecane C24H42 58.0         
1,2,4-Trimethyl-5-
hexadecylbenzene C25H44 42.0         

5-Phenyleicosane C26H46 39.0         
 
 
 
 
 



LA-UR-16-25529  Group Contribution Method for Estimating 
  Cetane and Octane Numbers 

July 2016   46 

Table B-6. Cetane and Octane Number Data for Oxygenates Other Than Esters. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Alcohols 
Methanol CH4O 5.0 2.0 5.0 122.0  130.0 93.0   
Ethanol C2H6O 12.0 2.0 12.0 111.0 107.4 121.0 96 90.0 97.0 
isoPropanol C3H8O    117.0 112.5 106.0 95.0  99.0 
n-Propanol C3H8O 12.0   102.6  104.0 98.0 89.0  
2-Butanol C4H10O 8.5   108.0 105.0  91.0 87.0 93.0 
Isobutanol C4H10O 8.5   105.1 105.0  90.0   
n-Butanol C4H10O 12.0 3.7 17.0 96.0  98.0 78.0 85.0 90.0 
tert-Butanol C4H10O 5.6   107.0 105.0  94.0 89.0 104.0 
1-Pentanol C5H12O 18.2 18.2 20.0 78.0   74.0   
2-Methyl-2-butanol C5H12O    97.0      
3-Methyl-1-butanol C5H12O    113.0   88.0   
Isopentanol C5H12O 18.4   98.8 94.0  84.0   
1-Hexanol C6H14O 23.3   69.3   78.0   
1-Heptanol C7H16O 29.5         
1-Octanol C8H18O 39.1 33.7 39.1       
2-Ethyl-1-hexanol C8H18O 23.5         
3-Octanol C8H18O 25.1         
1-Nonaol C9H20O 46.2         
2-Nonanol C9H20O 39.6         
beta-Citromellol C10H20O 25.6         
1-Decanol C10H22O 50.3         
3,7-Dimethyl-1-octanol C10H22O 29.3         
1-Undecanol C11H24O 53.2         
1-Dodecanol C12H26O 63.6         
1-Tetradecanol C14H30O 80.8 51.0 80.8       
Palmitoleyl Alcohol C16H32O 46.0         
1-Hexadecanol C16H34O 68.0         
Linolenyl Alcohol C18H32O 41.0         
Linoleyl Alcohol C18H34O 44.0         
Oleyl Alcohol C18H36O 51.0         
1-Octadecanol C18H38O 81.0         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Ethers 
Dimethyl Ether C2H6O 78.0 55.0 78.0    78   
2-Methoxyethanol C3H8O2 13.0         
Dimethoxymethane C3H8O2 62.9 29.0 55.0       
1-Methoxy-2-Propanol C4H10O 19.0         
Diethylether C4H10O 140.0 140.0 160.0       
1-Methoxy-2-propanol C4H10O2 57.2         
1,2-Dimethoxyethane C4H10O2 94.0 90.0 98.0       
Methyl-tertbutyl ether C5H12O    118.0 115.2  101.0 97.2  
Poly(Oxyymethylene) dimethyl 
ethers C5H12O3 63.0         

2-Ethoxyethyl acetate C6H12O3 40.0         
Ethyl-tert-butyl Ether C6H14O 86.4   118.0   102.0   
tert-Amyl methyl ether C6H14O    109.0  115.0 99.0 98  
1,1-Diethoxyethane C6H14O2 40.0         
2-Butoxyethanol C6H14O2 59.6         
2-Methoxyethyl ether C6H14O3 170.0 112.0 170.0       
Poly(oxymethylene)dimethyl ethers C6H14O3 90.0         
2,4,7,9-Tetraoxadecane C6H14O4 64.5         
Hexymethyl ether C7H16O 99.8         
1-Butoxy-2-propanol C7H16O2 36.1         
Dipropylene glycol monomethyl 
ether C7H16O3 43.9 43.9 52.0       

Triethylene glycol monomethyl 
ether C7H16O4 80.7         

Dibutyl ether C8H18O 95.5 91.0 100.0       
Diisobutyl ether C8H18O 59.7         
Dimethoxyhexane C8H18O2 88.0         
Diethoxybutane C8H18O2 97.0         
2-Ethoxyethyl ether C8H18O3 151.0 113.0 151.0       
Triethylene glycol dimethyl ether C8H18O4 120.0         
Dibutoxymethane C9H20O2 74.0         
Rose oxide C10H8O 30.0         
DIisoamyl ether C10H22O 96.3         
Dipentyl ether C10H22O 135.0 111.0 135.0       
Tripropylene glycol monoethyl 
ether C10H22O4 63.0 63.0 81.3       
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Furans and Cyclic Ethers 
Furan C4H4O 7.0         
2-3-Dihydrofuran C4H6O 20.0         
2,5-Dihydrofuran C4H6O 15.6         
Tetrahydrofuran C4H6O 21.9         
2-Methylfuran C5H6O 8.9   103.0   86.0   
2-Furfuryl Alcohol C5H6O2 10.8         
2-Methyltetrahydrofuran C5H10O 22.0   86.0   73.0   
2-Tetrahydrofurfuryl Alcohol C5H10O2 17.9         
2,5-Dimethylfuran C6H6O 10.9   119.0      
2-Ethylfuran C6H8O 10.2         
2-Ethyltetrahydrofuran C6H12O 28.1         
2-Butylfuran C8H12O 13.1         
2-Butyltetrahydrofuran C8H16O 45.5         

Aldehydes and Ketones 
Acetone C3H6O    110.0      
Butanal C4H8O 41.1         
Isobutyraldehyde C4H8O 21.1         
Methyl Ethyl Ketone C4H8O    118.0      
Pentanal C5H10O 62.2         
3-Pentanone C5H10O 19.5         
Cyclohexanone C6H10O 10.0  10.4    100   
4-Methyl-3-penten-2-one C6H10O       99   
Hexanal C6H12O 75.2         
4-Methyl-2-penanone C6H12O 12.6         
Cycloheptanone C7H12O 22.5         
2-Heptanone C7H14O 30.0         
3-cyclohexene-1-carboxaldehyde C8H12O 28.1         
Octanal C8H16O 80.5  102.5    91   
2-Octanone C8H16O 36.6         
3-Octanone C8H16O 36.0      80   
2-Nonanobe C9H18O 46.1         
3,3,5-Trimethylcyclohexanone C10H18O 11.9         
Menthone C10H18O 20.6         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Carboxylic Acids 
Decanoic Acid C10H20O2 48         
Linolenic Acid C18H30O2 29         
cis,cis-9,12-Octadecadienoic Acid C18H32O2 31         
cis-9-Octadecenoic Acid C18H34O2 46         
Octadecanoic Acid C18H36O2 62         
 
 

Table B-7. Cetane and Octane Number Data for Esters. 
 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 

Ester of Carboxylic Acids 
Methyl Butanoate C5H10O2 6.4 6.0 6.4       
Methyl Pentanoate C6H12O2 13.3   105.0   105.0   
Methyl Sorbate C7H10O2 6.0         
Ethyl Levulinate C7H12O3 <5   110.0   102.0   
Ethyl Pentanoate C7H14O2 18.6         
Methyl Capronate C7H14O2 18.0 18.0 23.9       
Butyl Butanoate C8H16O2 17.8         
Methyl Heptanoate C8H16O2 34.2         
n-Hexyl Acetate C8H16O2 33.8         
Propyl Pentanoate C8H16O2 20.7         
Butyl Levulinate C9H16O2 14.4   98.0   96.0   
Butyl Pentanoate C9H18O2 23.5         
Methyl Octanoate C9H18O2 33.6 33.6 34.0       
Pentyl Pentanoate C10H20O2 28.8 27.6 28.8       
Methyl-9-decenoate C11H20O2 38.3         
Methyl Decanoate C11H22O2 47.9 47.9 54.1       
Butyl Octanoate C12H14O2 39.6         
Decyl Acetate C12H14O2 62.0         
Ethyl Decanoate C12H14O2 51.2 51.2 60.0       
Isopropyle Decanoate C13H26O2 46.6         
Methyl Laurate C13H26O2 61.2 54.0 70.0       
Octyl Valerate C13H26O2 49.0         



LA-UR-16-25529  Group Contribution Method for Estimating 
  Cetane and Octane Numbers 

July 2016   50 

Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 
Propyl Decanoate C13H26O2 52.9 52.9 64.0       
Butyl Decanoate C13H28O2 54.6  63.0       
Dodecyl Acetate C13H28O2 77.0         
Ethyl Laurate C13H28O2 73.0         
Decyl Valerate C15H30O2 61.0         
Methyl Myristate C15H30O2 73.5 66.2 73.5       
Propyl Laurate C15H30O2 71.0         
Butyl Laurate C16H32O2 73.0         
Ethyl Myristate C16H32O2 66.9 66.9 72.0       
Hexyl Caprate C16H32O2 64.0         
Tetradecyl Acetate C16H32O2 81.0         
Methyl cis-2-Hexadecenate C17H32O2 51.0         
Dodecyl Valerate C17H34O2 67.0         
Methyl Hexadecanate C17H34O2 85.9 74.3 91.0       
Propyl Myristate C17H34O2 71.0         
Butyl Myristate C18H36O2 69.4 69.4 73.0       
Ethyl Hexadecanate C18H36O2 93.1 80.0 93.1       
Hexadecyl Acetate C18H36O2 86.0         
Hexyl Laurate C18H36O2 74.0         
Methyl alpha-Linolenate C19H32O2 22.7         
Methyl gamma-Linolenate C19H32O2 29.2         
Methyl Linolenate C19H32O2 45.9 23.0 45.9       
Methyl cis,cis-9,12-
Octadecadienate C19H34O2 38.2 38.0 43.9       

Methyl Linolelaidate C19H34O2 43.0         
Methyl cis-9-Octadecenate C19H36O2 59.3 55.0 80.0       
Methyl Elaidate C19H36O2 57.2         
Methyl Petroselinate C19H36O2 58.6         
Methyl Ricnoleate C19H36O2 37.4         
Isopropyl Hexadecanate C19H38O2 92.6         
Methyl Octadecanate C19H38O2 86.9 75.6 101.0       
Propyl Hexadecanate C19H38O2 85.0 83.0 85.0       
Tetradecyl Valerate C19H38O2 68.0         
Methyl Asclepate C19H38O3 53.9         
Ethyl Linolenate C20H34O2 27.0         
Ethyl cis,cis-9,12-Octadecadienate C20H36O2 39.6 37.0 44.4       
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 
Ethyl cis-9-Octadecenate C20H38O2 67.8 54.0 72.0       
2-Butyl Hexadecanate C20H40O2 84.8         
Butyl Hexadecanate C20H40O2 91.9 87.0 92.0       
Decyl Caprate C20H40O2 81.0         
Ethyl Octadecanate C20H40O2 97.7 76.8 98.0       
Hexyl Myristate C20H40O2 72.0         
Isobutyl Hexadecanate C20H40O2 83.6         
Octadecyl Acetate C20H40O2 90.0         
Octyl Laurate C20H40O2 84.0         
Methyl 5(Z) 8(Z) 11(Z) 14(Z) 
Eicosatetraenoate C21H34O2 29.6         

Propyl Linolenate C21H36O2 27.0         
Propyl cis,cis-9,12-
Octadecadienate C21H38O2 44.0 41.0 44.0       

Isopropyl cis-9-Octadecenate C21H40O2 86.6         
Methyl Gondoate C21H40O2 73.2         
Propyl cis-9-Octadecenate C21H40O2 58.8         
Propyl cis-9-Octadecenate C21H40O2 58.8 56.0 72.0       
Hexadecyl Valerate C21H42O2 70.0         
Isopropyl Octadecanate C21H42O2 96.5         
Methyl Arachidate C21H42O2 100.0         
Propyl Octadecanate C21H42O2 90.9         
Butyl Linolenate C22H38O2 29.0         
Butyl cis,cis-9,12-Octadecadienate C22H40O2 53.5         
2-Butyl cis-9-Octadecenate C22H42O2 71.9         
Butyl cis-9-Octadecenate C22H42O2 61.6 60.0 102.0       
Isobutyl cis-9-Octadecenate C22H42O2 59.6         
2-Butyl Octadecanate C22H44O2 97.5         
Butyl Octadecanate C22H44O2 92.5         
Decyl Laurate C22H44O2 84.0         
Hexyl Hexanoate C22H44O2 87.0         
Isobutyl Octadecanate C22H44O2 99.3         
Octyl Myristate C22H44O2 71.0         
Methyl 4(Z) 7(Z) 10(Z) 13(Z0 
16(Z) 19(Z) Docosahexaenoate C23H34O2 24.4         

Methyl Erucate C23H44O2 74.2         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 
Hexyl cis-9-Octadecenate C23H46O2 102.0         
2-Ethylhexyl Hexadecanate C24H48O2 98.2 98.0 107.0       
Decyl Myristate C24H48O2 72.0         
Dodecyl Laurate C24H48O2 85.0         
2-Ethylhexyl cis-9-Octadecenate C26H50O2 88.2         
Octyl cis-9-Octadecenate C26H50O2 131.0         
2-Ethylhexyl Octadecanate C26H52O2 115.5         
Decyl Hexadecanoate C26H52O2 91.0         
Dodecyl Myristate C26H52O2 74.0         
Decyl cis-9-Octadecenate C28H54O2 134.0         
Hexadecyl Laurate C28H56O2 88.0         

Esters of Dicarboxylic Acids 
Dimethyl Malonate C5H8O4 15.0         
Diethyl Oxalate C6H10O4 21.0         
Diethyl Succinate C8H14O4 21.0         
Dimethyl Adipate C8H14O4 5.0         
Glycerol Tracetate C9H14O4 <5         
Dimethyl Phthalate C10H10O4 19.0         
Diethyl Adipate C10H18O4 15.0         
Dibutyl Malonate C11H20O4 21.0         
Dimethyl Azelate C11H20O4 24.0         
Dibutyl Butanedioate C12H14O4 21.0         
Dibutyl Fumarate C12H20O4 23.0         
Dibutyl Maleate C12H20O4 29.0 28.0        
Dibutyl Succinate C12H22O4 13.0         
Diethyl Azelate C13H24O4 47.0         
Dibutyl Adipate C14H26O4 81.0         
Diethyl Sebacate C14H26O4 47.0         
Dibutyl Phthalate C16H22O4 38.0         
Dibutyl Azalate C17H32O4 83.0         
Dihexyl Phthalate C20H30O4 48.0         
Dihexal Azalate C21H40O4 99.0         
Dioctyl Adipate C22H42O4 89.0         
 Dioxtyl Sebacate C26H50O4 70.0         
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Compound Dame Formula 
Cetane Number Research Octane Number Motor Octane Number 

Nominal Minimum Maximum Nominal Minimum Maximum Nominal Minimum Maximum 
Triglycerides 

Tribyrin C15H26O6 -5.0         
Trilaurin C39H74O6 100.0         
Trimyristin C45H86O6 100.0         
Tripalmitin C51H98O6 89.0         
Trilonlenin C57H92O6 23.0         
Trilinolein C57H98O6 32.0         
Triolein C57H104O6 45.0         
Tristearin C57H110O6 85.0         
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LA-UR-16-25529  Group Contribution Method for Estimating 
  Cetane and Octane Numbers 

July 2016   54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



LA-UR-16-25529  Group Contribution Method for Estimating 
  Cetane and Octane Numbers 

July 2016   55 

APPENDIX C 
PARAMETERS FOR THE ARTIFICIAL NEURAL NETWORK 

 
C.1 INTRODUCTION 

This appendix contains tabulations of the parameters for the ANN representation of CN and ONs. Figure 
B.1 is a graphical representation of neural network structure. The input parameters are the number of each 
type of functional group comprising the molecule. Input parameters for this neural network are not scaled, 
which differs from the usual practice. Input nodes are labeled with the appropriate functional group.  
 
This ANN for cetane and octane number contains eight hidden nodes. Four hidden nodes are connected to 
the output node for CN. These nodes are labeled CN-1 through CN-4. The remaining four hidden nodes 
are connected to the output nodes for RON and MON. These nodes are labeled RON-1, RON-2, MON-1, 
and MON-2. The ANN has three output nodes representing CN, RON, and MON. Output values are 
defined on the interval [0,1], and they must be scaled to obtain the final values of CN, RON, and MON. 
 
C.2  PARAMETERS FOR HIDDEN NODE INPUTS 

The input to a hidden node is a linear combination of the number of functional groups in the molecule. 

 
  
xk = Go,k + Gj ,k ⋅nj

j∈groups
∑  , (C-1) 

where xk is the input to hidden node k, Go,k is a constant for hidden node k, Gj,k is the contribution of group 
j to hidden node k, and nj is the number of j groups in the molecule. Values of Go,k and Gj,k are given in 
Table C-1. 
 
 
 

 
Fig. C-1. Structure of the artificial neural network representing cetane and octane numbers. 
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Table C-1.  Group contribution parameters for hidden nodes (Go,k and Gj,k). 
 
 

Group 
Hidden Node Label 

CN-1 CN-2 CN-3 CN-4 RON-1 RON-2 MON-1 MON-2 

Constant 0.013 1.372 1.607 4.583 81.133 -0.051 4.467 0.134 

Paraffins 

–CH3 -0.011 -0.687 -0.031 -0.620 -29.490 -1.565 -0.837 8.709 

–CH2– 0.054 1.146 0.058 -0.806 -8.844 -0.839 -0.647 -4.699 

–CH< (C# = 2) -0.152 5.323 -0.386 -0.149 32.432 0.312 0.583 -0.284 

–CH< (C# = 3) -0.221 4.483 -0.374 0.972 23.796 0.001 0.965 1.893 

–CH< (C# ≥ 4) -0.853 -1.738 -1.400 -0.412 1.808 0.000 0.989 5.263 

>C< (C# = 2) 0.118 5.753 0.787 0.160 64.174 -4.161 2.586 -9.351 

>C< (C# ≥ 3) 0.184 -1.593 1.032 -0.160 47.887 -3.997 3.441 6.040 

Olefins / Alkynes 

=CH2 -0.130 2.666 -0.201 -0.069 0.133 -3.970 -1.047 -13.767 

=CH– (C# = 2) -0.033 -0.013 0.037 -0.105 3.987 -4.492 0.711 -20.790 

=CH– (C# = 3) -0.006 2.918 0.254 -0.918 0.281 -3.021 -0.339 -13.711 

=CH– (C# ≥ 4) -0.135 0.000 -0.149 -0.147 0.015 -1.522 1.249 3.284 

>C= (C# = 2) -1.272 6.285 -2.089 -1.668 -17.971 -1.371 3.042 -27.211 

>C= (C# ≥ 3) -0.673 4.277 -0.800 0.108 11.631 0.071 1.257 -24.226 

≡CH -0.136 0.000 0.000 0.000 -50.914 -5.785 0.794 -0.001 

≡C– -0.136 0.000 0.000 0.000 2.085 0.419 -0.238 -0.043 

Naphthenes 

–CH2– -0.237 0.017 -0.497 -1.361 -11.993 -0.627 -0.509 0.120 

–CH< 0.193 1.540 0.601 0.040 4.251 -6.175 0.376 -9.293 

–CH< (ortho) -1.317 1.656 -2.280 -0.166 18.516 0.747 0.862 -8.680 

>C< -0.300 1.546 -0.539 -0.775 37.083 -1.006 1.800 -3.705 

=CH– 0.211 0.610 0.407 -0.033 0.000 -0.063 4.515 0.001 

>C= -1.219 5.213 -1.461 0.058 0.000 0.000 0.000 0.000 

Aromatics 

=CH– -0.236 0.719 -0.259 -0.840 -19.935 -1.116 0.791 0.331 

=C< (ring/ring) -2.165 -0.147 -1.571 0.120 0.000 -0.695 -0.036 -0.264 

=C< 0.415 -0.749 0.175 4.568 0.404 4.497 7.226 0.100 

=C< (ortho) -1.407 1.653 -3.857 2.142 0.402 -4.770 -1.109 -0.047 

=C< (meta) 0.406 0.596 2.047 0.786 0.403 -0.284 0.551 0.000 

=C< (para) -0.321 1.318 -0.152 0.225 0.403 -1.059 2.492 -0.023 
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Group 
Hidden Node Label 

CN-1 CN-2 CN-3 CN-4 RON-1 RON-2 MON-1 MON-2 

Oxygenates 

–OH -0.494 2.640 -0.566 0.011 -23.999 -1.237 1.134 -17.370 
=O (aldehyde) 0.711 -0.039 5.804 0.089 8.281 0.983 1.508 45.838 

=O (ketone) -1.394 -3.374 -3.878 1.969 8.277 0.982 1.503 45.841 
–O– (1st) 0.969 3.270 1.793 1.399 -9.654 -8.132 -0.281 6.334 

–O– (2nd+) 0.265 -1.664 0.166 7.562 0.000 0.761 -0.372 0.016 
–O– (ring) 0.026 0.707 -0.063 0.249 0.126 8.073 -2.335 -0.074 

–O– (aromatic) -0.329 8.043 -0.481 -1.099 -0.010 -3.510 -1.137 0.000 
–COOH -0.550 0.077 -0.554 -5.863 0.000 0.000 0.000 0.000 

–COO– (1st) -0.435 3.414 -0.801 3.022 0.596 2.303 9.909 17.222 
–COO– (2nd) -0.024 5.173 -0.048 1.345 0.000 0.000 0.000 0.000 

–COO– (3rd) -0.736 -0.059 -0.296 1.247 0.000 0.000 0.000 0.000 
 
 
In this study, some functional groups account for position on the carbon chain or ring. Other functional 
groups depend on the number of functional groups in the molecule. The symbol C# refers to carbon 
number and it designated the distance the group is from a terminal carbon or oxygen atom on the longest 
chain containing the group. C# = 1 corresponds to a terminal carbon atom. 
 
Example 1 – 2,4,8-trimethylnonane 
The methyl group on the eighth carbon atom is located adjacent to a terminal carbon atom, so it is 
attached to a C# = 2 –CH< group. The groups in this molecule are 
 
 5  –CH3    

2  –CH<  (C# = 2) 
1  –CH<  (C# ≥ 4) 
4  –CH2– 

 
Example 2 – 2,7-dimethyl-1-octanol 
Because oxygen in the alcohol group is counted when determine C#, the methylene group adjacent to the 
alcohol group has C# = 2. The methyl group attached to the second carbon atom in the IUPAC notation 
has C# = 3 according to the definitions of the groups in Table B.1. The seventh carbon atom in the octane 
chain is adjacent to a terminal carbon atom, so C# = 2. The groups in this molecule are 
 
 3  –CH3    

1  –CH<  (C# = 2) 
1  –CH<  (C# = 3) 
5  –CH2– 
1  –OH 

 
For ringed compounds with multiple side groups, one side group is picked as a reference position. Choice 
of the reference position is not arbitrary, and it does not correspond to the IUPAC nomenclature. The 
group for the ring group for the reference position is the same as for a monosubstituted ring. The carbon 
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atoms with other side groups attached are designated ortho-, meta-, or para- depending on position 
relative to the reference position. The groups for aromatic compounds includes a group designated =C< 
(ring/ring). This group corresponds to the carbon atom at the juncture of two aromatic rings found in 
compounds such as a naphthalene or anthracene. This group does not apply to aromatic carbon atoms 
connect by an aliphatic bond such as the bond the joins the two phenyl groups in a biphenyl molecule. 
 
Example 3 – 1,2,4-trimethylbenzene 
The carbon atom in the second position according to IUPAC notation is the reference position because it 
minimizes the distances from the other side group to the reference position. The group for a 
monosubstituted aromatic compound is used for the reference carbon atom. The first carbon according to 
IUPAC notation is in the otho position relative to the reference position, and the fourth carbon is in the 
meta position relative to the reference position. The groups in this molecule are 
 
 3  –CH3    
 1  =C< (aromatic) 
 1  =C< (ortho) (aromatic) 
 1  =C< (meta) (aromatic) 
 3  =CH– (aromatic) 
 
Example 4 – 1,2,4-trimethylcyclohexane 
As in Example 3, the carbon atom in the second position according to IUPAC notation is the reference 
position because it minimizes the distances from the other side group to the reference position. 1he carbon 
atom in the first position is in the ortho position relative to the reference position. No special group are 
defined for carbon atoms in the meta and para positions, so they are represent by the same group that is 
used for the reference position or a monosubstituted ring. The groups in this molecule are 
 
 3  –CH3    
 2  –CH< (ring) 
 1  –CH< (ortho) (ring) 
 3  –CH2– (ring) 
 
Example 5 – naphthalene 
The naphthalene molecule of to integrated aromatic rings containing two =C< (ring/ring) groups. The 
groups in this molecule are 
 
 8  =CH– (aromatic) 
 2  =C< (ring/ring) (aromatic) 
 
Example 6 – biphenyl 
For this group contribution method, biphenyl should be treated as a benzene molecule with a phenyl side 
group. The carbon atoms that are joined in the biphenyl molecule should be treated as an aromatic carbon 
with a side group. The groups in this molecule are 
 
 10  =CH– (aromatic) 
 2    =C< (aromatic) 
 
Two groups are used to represent an aldehyde or a ketone in this group contribution method. For an 
aldehyde, the two groups are  =CH– and =O (aldehyde). For ketones, the two groups are =C< and 
=O (ketone). The functional groups for ethers and esters depend distinguish between molecules with a 
single group an molecules with multiple groups. For an ether containing only one -O- group, the -O- (1st) 
group in Table B.1 is used. For an ether containing more than on -O- group, the -O- (1st) is used for one of 
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the -O- groups and the -O- (2nd) is used for all additional groups. The same method is used to represent 
fuels containing multiple ester groups. 
 
Example 7 – 2,6-dimethyl-4-heptanone (diisobutyl ketone) 
In this molecule, the methyl groups are located adjacent to the terminal carbon atoms, so the carbon atoms 
to which they are attached have C# = 2. The ketone group is the four carbon atom counting from either 
terminal carbon, so the carbon group for the ketone is =C< (C# ≥ 3). The groups in this molecule are 
 
 4  –CH3    

2  –CH<  (C# = 2) 
2  –CH2– 
1  =C< (C# ≥ 3) 
1  =O (ketone) 

 
Example 8 – diethyl oxalate 
When a molecule contains more than one ester group, each ester group is represent by a different function 
group in this group contribution correlation. Diethyl oxalate contains two ester groups, which are 
represented by –COO– (1st) and –COO– (2nd). The groups in this molecule are 
 
 2  –CH3    

2  –CH2– 
1 –COO– (1st)  
1 –COO– (2nd) 

 
C.3 PARAMETERS FOR OUTPUT NODE INPUTS 

The parameters for the output nodes represent the connections between the hidden nodes and the output 
nodes. The input to an output node is a linear combination of outputs from the hidden nodes. 

 
  
yk = Ho,k + H j ,k ⋅Oj

j∈hiddennodes
∑  , (C-2) 

where yk is the input to output node k, Ho,k is a constant for output node k, Hj,k is a parameter for the output 
from hidden node j to output node k, Oj is the output from hidden node j. Oj is defined on the interval 
[0,1]. The parameters for determining the input to the output nodes are given in Table C-2. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C-2. Parameters for output node inputs. 
 
Hidden Node 

Label 
Output Node Label 

CN RON MON 

Constant -4.454 -2.152 -2.035 

CN-1 4.553 0.000 0.000 

CN-2 3.430 0.000 0.000 

CN-3 -2.314 0.000 0.000 

CN-4 -0.507 0.000 0.000 

RON-1 0.000 0.153 0.076 

RON-2 0.000 4.375 0.875 

MON-1 0.000 2.295 2.029 

MON-2 0.000 0.025 0.152 
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C.4. SCALING FACTORS FOR OUTPUT PARAMETERS 

This ANN uses the logistic function for the nodes. The range of the logistic function is defined on the 
interval (0,1), so the output variables must be scaled to obtain cetane and octane numbers. Scaling is 
based on a simple linear transformation of variables. The predicted values of cetane and octane number 
are given by the following equation. 

  Zi = LBi + UBi − LBi( ) ⋅ zi    , (C-3) 

where Zi for property i, LBi is the lower bound for i, UBi is the upper bound for i, and zi is the output from 
output node i.  Property i is either CN, RON, or MON. Values for the lower and upper bounds are given 
in Table C-3. 
 

Table C-3. Upper and lower bounds for output variables. 
 

Parameter 
Output Node Label 

CN RON MON 

Lower Bound -50 -50 -50 

Upper Bound 250 225 225 
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APPENDIX D 
PARAMETERS FOR A CONVENTIONAL GROUP CONTRIBUTION METHODS 

 

D.1. INTRODUCTION 

To evaluate the advantages of using an ANN-based group contribution method, conventional group 
contribution correlations were developed for CN and ONs. In a conventional group contribution method, 
structure is characterized by the sum of the group contributions. 

 
  
xk = Gj ,k ⋅nj

j∈groups
∑  , (D-1) 

where xk is the sum of the group contribution factors for property k, Gj,k is the contribution of group j to 
the input to property k, and nj is the number of j groups in the molecule. Property k is CN, RON, or MON. 
Property k is assumed to be a function of xk. In this study, two functions were considered. The first 
function was a polynomial, and the second was a bounded function. 
 
D.2. POLYNOMIAL FUNCTION 

The function relating xk to property k is assumed to be a fourth-order polynomial. 

   Zk = ak + bk ⋅ xk + ck ⋅ xk
2 + dk ⋅ xk

3 + ek ⋅ xk
4  , (D-2) 

where Zk is property k and ak, bk, ck, dk, and ek are empirical constants. The functional groups given in 
Table C-1 of Appendix C were also used for the conventional group contribution correlation. The 
parameters Gj,k  in Eq. (D-1) and the constants in Eq. (D-2) were determined from a least-squares fit to the 
data in Appendix B. The calculations were implemented in Excel, and the Solver add-in with the 
multistart option was used to minimize the sum-of-squared errors. The resulting correlation is very similar 
to Albahri’s group contribution method.1 The group contribution factors are given in Table D-1 and the 
constants for the polynomial equation are given in Table D-2. Errors in this correlation are summarized in 
Table D-3. 
 
 
Table D-1. Group factors for conventional a group contribution correlation with a polynomial function. 
 

Group 
Property 

Group 
Property 

CN RON MON CN RON MON 

Paraffins 

–CH3 0.529 1.566 0.272 –CH< (C# ≥ 4) -2.598 -1.036 -0.361 

–CH2– 0.637 1.092 0.180 >C< (C# = 2) -1.558 -4.365 -0.803 

–CH< (C# = 2) 0.080 -1.257 -0.217 >C< (C# ≥ 3) -2.731 -4.789 -1.149 

–CH< (C# = 3) -1.522 -1.598 -0.302     

Olefins / Alkynes 

=CH2 -0.107 1.579 0.340 >C= (C# = 2) -2.057 -3.278 -0.601 

=CH– (C# = 2) -0.086 -0.965 -0.168 >C= (C# ≥ 3) -4.068 -6.832 -0.144 

=CH– (C# = 3) 0.413 0.433 0.164 ≡CH -0.353 -1.122 -0.227 

=CH– (C# ≥ 4) -0.787 -1.923 -0.360 ≡C– -0.353 0.244 0.188 
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Group 
Property 

Group 
Property 

CN RON MON CN RON MON 

Naphthenes 

–CH2– 0.358 0.846 0.163 >C< -0.975 -2.670 -0.637 

–CH< -0.443 -0.456 -0.074 =CH– -0.237 -0.672 -0.062 

–CH< (ortho) -0.673 -1.264 -0.226 >C= -0.099 -0.354 -0.346 

Aromatics 

=CH– -0.113 0.045 -0.002 =C< (ortho) -0.103 -0.290 -0.217 

=C< (ring/ring) 0.047 0.000 0.213 =C< (meta) -2.206 -0.366 -0.073 

=C< -2.866 -1.715 -0.360 =C< (para) -2.308 -0.103 -0.264 

Oxygenates 

–OH -2.229 -1.089 -0.191 –O– (aromatic) -3.373 0.006 0.045 

=O (aldehyde) 1.730 -0.001 -0.379 –COOH -2.576 0.000 0.045 

=O (ketone) 2.109 -0.001 -0.359 –COO– (1st) -2.222 -7.319 -0.684 

–O– (1st) 3.419 -1.322 -0.001 –COO– (2nd) -0.773 0.000 0.044 

–O– (2nd+) 2.138 -1.219 -0.001 –COO– (3rd) -9.999 0.000 0.044 

–O– (ring) 0.499 -0.082 0.006     
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
, 
 

Table D-2. Constants for Eq. (D-2). 
 
Hidden Node 

Label 
Output Node Label 

CN RON MON 

ak 17.0493 105.286 93.354 

bk 6.3931 3.289 11.871 

ck 0.4384 -0.713 -14.666 

dk -0.044 -0.311 -36.844 

ek 0.0006 0.024 12.125 
 

Table D-3. Standard deviation of errors for the polynomial group contribution correlation. 
 

Type of 
Compound 

Property 

CN RON MON 

Paraffins 14.3 9.4 8.3 

Olefins 13.7 11.6 12.1 

Alkynes N/A 11.2 1.2 

Naphthenes 13.7 10.1 8.0 

Aromatics 10.6 6.3 5.5 

Oxygenates 13.1 6.9 8.3 

Overall 13.2 10.2 9.2 
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D.3. BOUNDED FUNCTION 

Polynomial functions are unbounded, so correlations based on polynomial fits can yield inaccurate and 
unrealistic results when extrapolated. In an attempt to obtain a correlation that could be extrapolated with 
greater confidence, a bounded function was used to relate the sum of group contributions to CN and ONs. 
In this alternative formulation, the sum of group contributions includes a constant. 

 
  
xk = Go,k + G j ,k ⋅nj

j∈groups
∑  , (D-3) 

where xk is the sum of the group contribution factors for property k, Go,k is a constant for property k, Gj,k is 
the contribution of group j to the input to property k, and nj is the number of j groups in the molecule. A 
nested logistic function was used to relate the sum of group contributions to cetane and octane numbers.  

 

  

Zk = LBk +
UBk − LBk( )

1+ exp −α k −
βk

1+ exp −xk( )
⎛

⎝
⎜

⎞

⎠
⎟

   , (D-4) 

where Zk is property k, LBk is the lower bound on property k, UBk is the upper bound on property k, and αk 
and βk are constants. LBk, UBk, αk, and βk are empirical constants determined form a regression analysis. 
This function was based on the simple ANN shown in Fig. D-1. The group contribution factors are given 
in Table D-4 and the constants for the Eq. (D-4) are given in Table D-5. Errors in this correlation are 
summarized in Table D-6. 
 
 

 
 

 
 

Fig. D-1. Simple ANN used to generate the bound function for a group contribution correlation 
represented by Eq. (D-3) 
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Table D-4. Group factors for conventional a group contribution correlation with a bounded function. 

 

Group 
Property 

Group 
Property 

CN RON MON CN RON MON 

Constant, Go,k -0.045 0.019 -0.001     

Paraffins 

–CH3 -0.012 -0.086 -0.054 –CH< (C# ≥ 4) 0.067 0.075 0.080 

–CH2– -0.021 -0.063 -0.041 >C< (C# = 2) 0.033 0.258 0.169 

–CH< (C# = 2) -0.011 0.075 0.047 >C< (C# ≥ 3) 0.079 0.291 0.241 

–CH< (C# = 3) 0.029 0.097 0.066     

Olefins / Alkynes 

=CH2 -0.004 -0.060 -0.061 >C= (C# = 2) 0.066 0.109 0.125 

=CH– (C# = 2) -0.001 0.043 0.028 >C= (C# ≥ 3) 0.112 0.076 0.029 

=CH– (C# = 3) -0.023 0.000 -0.023 ≡CH -4.285 0.062 0.061 

=CH– (C# ≥ 4) 0.028 0.095 0.069 ≡C– 0.100 -0.001 -0.046 

Naphthenes 

–CH2– -0.014 -0.030 -0.034 >C< 0.011 0.100 0.135 

–CH< 0.007 0.018 0.012 =CH– 0.002 0.588 0.239 

–CH< (ortho) 0.020 0.048 0.048 >C= 0.090 0.001 -0.167 

Aromatics 

=CH– 0.000 -0.013 0.069 =C< (ortho) 0.005 -0.015 0.086 

=C< (ring/ring) 0.015 0.001 -0.313 =C< (meta) 0.931 0.019 0.243 

=C< 0.087 0.170 -0.236 =C< (para) 0.707 -0.017 0.117 

Oxygenates 

–OH 0.087 0.079 0.053 –O– (aromatic) 0.042 0.016 -0.112 

=O (aldehyde) -0.073 0.887 0.147 –COOH 0.080 3.594 0.004 

=O (ketone) -0.068 -0.123 0.146 –COO– (1st) 0.050 2.948 1.795 

–O– (1st) -0.164 1.121 0.020 –COO– (2nd) 0.028 3.594 1.609 

–O– (2nd+) -0.028 0.232 0.005 –COO– (3rd) 0.407 3.594 1.609 

–O– (ring) -0.013 -0.021 -0.108     
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Table D-5. Constants for Eq. (D-4). 
 
Hidden Node 

Label 
Output Node Label 

CN RON MON 

LBk 0.0 -30.0 -80.0 

UBk 100.0 110.0 100.0 

αk -18.771 24.954 21.947 

βk 40.850 -57.007 -52.183 
 

Table D-6. Standard deviation of errors for the bound function group contribution correlation. 
 

Type of 
Compound 

Output Node Label 

CN RON MON 

Paraffins 13.5 9.5 7.6 

Olefins 10.5 6.4 8.0 

Alkynes N/A 14.9 0.0 

Naphthenes 13.5 10.5 7.7 

Aromatics 10.1 5.3 4.6 

Oxygenates 13.8 16.0 5.4 

Overall 13.5 10.3 7.2 
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